Abelian theorems for stochastic volatility models with application to the estimation of jump activity of volatility

Loading...
Thumbnail Image

Date

Volume

1631

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Link to publishers version

Abstract

In this paper, we prove a kind of Abelian theorem for a class of stochastic volatility models $(X, V)$, where both the state process $X$ and the volatility process $V$ may have jumps. Our results relate the asymptotic behavior of the characteristic function of $X_Delta$ for some $Delta > 0$ in a stationary regime to the Blumenthal-Getoor indexes of the Lévy processes driving the jumps in $X$ and $V$ . The results obtained are used to construct consistent estimators for the above Blumenthal-Getoor indexes based on low-frequency observations of the state process $X$. We derive the convergence rates for the corresponding estimator and prove that these rates can not be improved in general.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.