Effect of head group and lipid tail oxidation in the cell membrane revealed through integrated simulations and experiments

dc.bibliographicCitation.firstPage5761
dc.bibliographicCitation.journalTitleScientific reportseng
dc.bibliographicCitation.volume7
dc.contributor.authorYusupov, M.
dc.contributor.authorWende, K.
dc.contributor.authorKupsch, S.
dc.contributor.authorNeyts, E. C.
dc.contributor.authorReuter, S.
dc.contributor.authorBogaerts, A.
dc.date.accessioned2023-01-10T10:44:20Z
dc.date.available2023-01-10T10:44:20Z
dc.date.issued2017-7-18
dc.description.abstractWe report on multi-level atomistic simulations for the interaction of reactive oxygen species (ROS) with the head groups of the phospholipid bilayer, and the subsequent effect of head group and lipid tail oxidation on the structural and dynamic properties of the cell membrane. Our simulations are validated by experiments using a cold atmospheric plasma as external ROS source. We found that plasma treatment leads to a slight initial rise in membrane rigidity, followed by a strong and persistent increase in fluidity, indicating a drop in lipid order. The latter is also revealed by our simulations. This study is important for cancer treatment by therapies producing (extracellular) ROS, such as plasma treatment. These ROS will interact with the cell membrane, first oxidizing the head groups, followed by the lipid tails. A drop in lipid order might allow them to penetrate into the cell interior (e.g., through pores created due to oxidation of the lipid tails) and cause intracellular oxidative damage, eventually leading to cell death. This work in general elucidates the underlying mechanisms of ROS interaction with the cell membrane at the atomic level.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/10824
dc.identifier.urihttp://dx.doi.org/10.34657/9850
dc.language.isoeng
dc.publisher[London] : Macmillan Publishers Limited, part of Springer Nature
dc.relation.doihttps://doi.org/10.1038/s41598-017-06412-8
dc.relation.essn2045-2322
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subject.ddc500
dc.subject.ddc600
dc.subject.otherCell Membraneeng
dc.subject.otherHydroxyl Radicaleng
dc.subject.otherLipid Bilayerseng
dc.subject.otherMass Spectrometryeng
dc.subject.otherMembrane Fluidityeng
dc.subject.otherMolecular Dynamics Simulationeng
dc.subject.otherMolecular Structureeng
dc.subject.otherOxidation-Reductioneng
dc.subject.otherPhospholipidseng
dc.subject.otherReactive Oxygen Specieseng
dc.titleEffect of head group and lipid tail oxidation in the cell membrane revealed through integrated simulations and experimentseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorINP
wgl.subjectPhysikger
wgl.subjectChemieger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Effect_of_head_group.pdf
Size:
3.7 MB
Format:
Adobe Portable Document Format
Description:
Collections