Combining Textual Features for the Detection of Hateful and Offensive Language

dc.bibliographicCitation.bookTitleFIRE-WN 2021: FIRE 2021 Working Noteseng
dc.bibliographicCitation.firstPageT1-40
dc.bibliographicCitation.journalTitleCEUR workshop proceedingseng
dc.bibliographicCitation.volume3159
dc.contributor.authorHakimov, Sherzod
dc.contributor.authorEwerth, Ralph
dc.contributor.editorMehta, Parth
dc.contributor.editorMandl, Thomas
dc.contributor.editorMajumder, Prasenjit
dc.contributor.editorMitra, Mandar
dc.date.accessioned2022-09-01T04:42:30Z
dc.date.available2022-09-01T04:42:30Z
dc.date.issued2021
dc.description.abstractThe detection of offensive, hateful and profane language has become a critical challenge since many users in social networks are exposed to cyberbullying activities on a daily basis. In this paper, we present an analysis of combining different textual features for the detection of hateful or offensive posts on Twitter. We provide a detailed experimental evaluation to understand the impact of each building block in a neural network architecture. The proposed architecture is evaluated on the English Subtask 1A: Identifying Hate, offensive and profane content from the post datasets of HASOC-2021 dataset under the team name TIB-VA. We compared different variants of the contextual word embeddings combined with the character level embeddings and the encoding of collected hate terms.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/10135
dc.identifier.urihttp://dx.doi.org/10.34657/9173
dc.language.isoengeng
dc.publisherAachen, Germany : RWTH Aachen
dc.relation.essn1613-0073
dc.relation.urihttp://ceur-ws.org/Vol-3159/T1-40.pdf
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc004
dc.subject.gndKonferenzschriftger
dc.subject.otherhate speech detectioneng
dc.subject.otheroffensive language detectioneng
dc.subject.otherabusive language detectioneng
dc.subject.othersocial media miningeng
dc.titleCombining Textual Features for the Detection of Hateful and Offensive Languageeng
dc.typeBookParteng
dc.typeTexteng
dcterms.eventWorking Notes of FIRE 2021 - Forum for Information Retrieval Evaluation, December 13-17, 2021, Gandhinagar, India
tib.accessRightsopenAccesseng
wgl.contributorTIB
wgl.subjectInformatikger
wgl.typeBuchkapitel / Sammelwerksbeitragger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Combining_Textual_Features.pdf
Size:
640.29 KB
Format:
Adobe Portable Document Format
Description: