Neckpinch singularities in fractional mean curvature flows
Loading...
Date
2016
Volume
2282
Issue
Journal
Series Titel
WIAS Preprints
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Link to publishers version
Abstract
In this paper we consider the evolution of boundaries of sets by a fractional mean curvature flow. We show that, for any dimension n ≥ 2, there exist embedded hypersurfaces in Rn which develop a singularity without shrinking to a point. Such examples are well known for the classical mean curvature flow for n ≥ 3. Interestingly, when n = 2, our result provides instead a counterexample in the nonlocal framework to the well known Grayson's Theorem [17], which states that any smooth embedded curve in the plane evolving by (classical) MCF shrinks to a point. The essential step in our construction is an estimate which ensures that a suitably small perturbation of a thin strip has positive fractional curvature at every boundary point.
Description
Keywords
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.