Neckpinch singularities in fractional mean curvature flows
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 2282 | |
dc.contributor.author | Cinti, Eleonora | |
dc.contributor.author | Sinestrari, Carlos | |
dc.contributor.author | Valdinoci, Enrico | |
dc.date.accessioned | 2016-12-14T22:46:59Z | |
dc.date.available | 2019-06-28T08:10:45Z | |
dc.date.issued | 2016 | |
dc.description.abstract | In this paper we consider the evolution of boundaries of sets by a fractional mean curvature flow. We show that, for any dimension n ≥ 2, there exist embedded hypersurfaces in Rn which develop a singularity without shrinking to a point. Such examples are well known for the classical mean curvature flow for n ≥ 3. Interestingly, when n = 2, our result provides instead a counterexample in the nonlocal framework to the well known Grayson's Theorem [17], which states that any smooth embedded curve in the plane evolving by (classical) MCF shrinks to a point. The essential step in our construction is an estimate which ensures that a suitably small perturbation of a thin strip has positive fractional curvature at every boundary point. | eng |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 2198-5855 | |
dc.identifier.uri | https://doi.org/10.34657/2734 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/2763 | |
dc.language.iso | eng | eng |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | eng |
dc.relation.issn | 0946-8633 | eng |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.subject.other | Fractional perimeter | eng |
dc.subject.other | fractional mean curvature flow | eng |
dc.title | Neckpinch singularities in fractional mean curvature flows | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | WIAS | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 871945797.pdf
- Size:
- 268.22 KB
- Format:
- Adobe Portable Document Format
- Description: