Neckpinch singularities in fractional mean curvature flows

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2282
dc.contributor.authorCinti, Eleonora
dc.contributor.authorSinestrari, Carlos
dc.contributor.authorValdinoci, Enrico
dc.date.accessioned2016-12-14T22:46:59Z
dc.date.available2019-06-28T08:10:45Z
dc.date.issued2016
dc.description.abstractIn this paper we consider the evolution of boundaries of sets by a fractional mean curvature flow. We show that, for any dimension n ≥ 2, there exist embedded hypersurfaces in Rn which develop a singularity without shrinking to a point. Such examples are well known for the classical mean curvature flow for n ≥ 3. Interestingly, when n = 2, our result provides instead a counterexample in the nonlocal framework to the well known Grayson's Theorem [17], which states that any smooth embedded curve in the plane evolving by (classical) MCF shrinks to a point. The essential step in our construction is an estimate which ensures that a suitably small perturbation of a thin strip has positive fractional curvature at every boundary point.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn2198-5855
dc.identifier.urihttps://doi.org/10.34657/2734
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2763
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherFractional perimetereng
dc.subject.otherfractional mean curvature floweng
dc.titleNeckpinch singularities in fractional mean curvature flowseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
871945797.pdf
Size:
268.22 KB
Format:
Adobe Portable Document Format
Description: