Averaging of time-periodic dissipation potentials in rate-independent processes : dedicated to Tomáš Roubícek on the occasion of his sixtieth birthday

Loading...
Thumbnail Image

Date

Volume

2336

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Link to publishers version

Abstract

We study the existence and well-posedness of rate-independent systems (or hysteresis operators) with a dissipation potential that oscillates in time with period. In particular, for the case of quadratic energies in a Hilbert space, we study the averaging limit → 0 and show that the effective dissipation potential is given by the minimum of all friction thresholds in one period, more precisely as the intersection of all the characteristic domains. We show that the rates of the process do not converge weakly, hence our analysis uses the notion of energetic solutions and relies on a detailed estimates to obtain a suitable qui-continuity of the solutions in the limit → 0.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.