A classical description of subnanometer resolution by atomic features in metallic structures

dc.bibliographicCitation.date2017
dc.bibliographicCitation.firstPage391
dc.bibliographicCitation.issue1
dc.bibliographicCitation.journalTitleNanoscaleeng
dc.bibliographicCitation.lastPage401
dc.bibliographicCitation.volume9
dc.contributor.authorTrautmann, S.
dc.contributor.authorAizpurua, J.
dc.contributor.authorGötz, I.
dc.contributor.authorUndisz, A.
dc.contributor.authorDellith, J.
dc.contributor.authorSchneidewind, H.
dc.contributor.authorRettenmayr, M.
dc.contributor.authorDeckert, V.
dc.date.accessioned2023-03-06T07:55:38Z
dc.date.available2023-03-06T07:55:38Z
dc.date.issued2016
dc.description.abstractRecent experiments have evidenced sub-nanometer resolution in plasmonic-enhanced probe spectroscopy. Such a high resolution cannot be simply explained using the commonly considered radii of metallic nanoparticles on plasmonic probes. In this contribution the effects of defects as small as a single atom found on spherical plasmonic particles acting as probing tips are investigated in connection with the spatial resolution provided. The presence of abundant edge and corner sites with atomic scale dimensions in crystalline metallic nanoparticles is evident from transmission electron microscopy (TEM) images. Electrodynamic calculations based on the Finite Element Method (FEM) are implemented to reveal the impact of the presence of such atomic features in probing tips on the lateral spatial resolution and field localization. Our analysis is developed for three different configurations, and under resonant and non-resonant illumination conditions, respectively. Based on this analysis, the limits of field enhancement, lateral resolution and field confinement in plasmon-enhanced spectroscopy and microscopy are inferred, reaching values below 1 nanometer for reasonable atomic sizes.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11685
dc.identifier.urihttp://dx.doi.org/10.34657/10718
dc.language.isoeng
dc.publisherCambridge : RSC Publ.
dc.relation.doihttps://doi.org/10.1039/c6nr07560f
dc.relation.essn2040-3372
dc.relation.issn2040-3364
dc.rights.licenseCC BY-NC 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/
dc.subject.ddc600
dc.subject.ddc530
dc.subject.ddc540
dc.subject.otherField localizationeng
dc.subject.otherLateral resolutioneng
dc.subject.otherMetallic nanoparticleseng
dc.subject.otherMetallic structureseng
dc.subject.otherPlasmonic particleseng
dc.subject.otherProbe spectroscopyeng
dc.subject.otherSpatial resolutioneng
dc.subject.otherSubnanometer resolutioneng
dc.titleA classical description of subnanometer resolution by atomic features in metallic structureseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorIPHT
wgl.subjectPhysikger
wgl.subjectChemieger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
c6nr07560f.pdf
Size:
3.3 MB
Format:
Adobe Portable Document Format
Description:
Collections