Unravelling the ion-energy-dependent structure evolution and its implications for the elastic properties of (V,Al)N thin films

dc.bibliographicCitation.firstPage117003
dc.bibliographicCitation.journalTitleActa Materialiaeng
dc.bibliographicCitation.volume214
dc.contributor.authorKarimi Aghda, Soheil
dc.contributor.authorMusic, Denis
dc.contributor.authorUnutulmazsoy, Yeliz
dc.contributor.authorSua, Heng Han
dc.contributor.authorMráz, Stanislav
dc.contributor.authorHans, Marcus
dc.contributor.authorPrimetzhofer, Daniel
dc.contributor.authorAnders, André
dc.contributor.authorSchneider, Jochen M.
dc.date.accessioned2023-01-24T10:35:11Z
dc.date.available2023-01-24T10:35:11Z
dc.date.issued2021
dc.description.abstractIon irradiation-induced changes in the structure and mechanical properties of metastable cubic (V,Al)N deposited by reactive high power pulsed magnetron sputtering are systematically investigated by correlating experiments and theory in the ion kinetic energy (Ek) range from 4 to 154 eV. Increasing Ek results in film densification and the evolution from a columnar (111) oriented structure at Ek ≤ 24 eV to a fine-grained structure with (100) preferred orientation for Ek ≥ 104 eV. Furthermore, the compressive intrinsic stress increases by 336 % to -4.8 GPa as Ek is increased from 4 to 104 eV. Higher ion kinetic energy causes stress relaxation to -2.7 GPa at 154 eV. These ion irradiation-induced changes in the thin film stress state are in good agreement with density functional theory simulations. Furthermore, the measured elastic moduli of (V,Al)N thin films exhibit no significant dependence on Ek. The apparent independence of the elastic modulus on Ek can be rationalized by considering the concurrent and balancing effects of bombardment-induced formation of Frenkel pairs (causing a decrease in elastic modulus) and evolution of compressive intrinsic stress (causing an increase in elastic modulus). Hence, the evolution of the film stresses and mechanical properties can be understood based on the complex interplay of ion irradiation-induced defect generation and annihilation.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11025
dc.identifier.urihttp://dx.doi.org/10.34657/10051
dc.language.isoeng
dc.publisherKidlington : Elsevier Science
dc.relation.doihttps://doi.org/10.1016/j.actamat.2021.117003
dc.relation.essn1359-6454
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subject.ddc670
dc.subject.otherElastic moduluseng
dc.subject.otherIon kinetic energyeng
dc.subject.otherPoint defectseng
dc.subject.otherStress stateeng
dc.titleUnravelling the ion-energy-dependent structure evolution and its implications for the elastic properties of (V,Al)N thin filmseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorIOM
wgl.subjectChemieger
wgl.subjectPhysikger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2-0-S1359645421003839-main.pdf
Size:
3.59 MB
Format:
Adobe Portable Document Format
Description:
Collections