Global existence, uniqueness and stability for nonlinear dissipative systems of bulk-interface interaction

Loading...
Thumbnail Image
Date
2016
Volume
2313
Issue
Journal
Series Titel
WIAS Preprints
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Link to publishers version
Abstract

We consider a general class of nonlinear parabolic systems corresponding to thermodynamically consistent gradient structure models of bulk-interface interaction. The setting includes non-smooth geometries and e.g. slow, fast and entropic diffusion processes under mass conservation. The main results are global well-posedness and exponential stability of equilibria. As a part of the proof, we show bulk-interface maximum principles and a bulk-interface Poincaré inequality. The method of proof for global existence is a simple but very versatile combination of maximal parabolic regularity of the linearization, a priori L1-bounds and a Schaefer fixed point argument. This allows us to extend the setting e.g. conditions and external forces.

Description
Keywords
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.