Strain-stabilized superconductivity

dc.bibliographicCitation.firstPage59
dc.bibliographicCitation.journalTitleNature Communicationseng
dc.bibliographicCitation.volume12
dc.contributor.authorRuf, J.P.
dc.contributor.authorPaik, H.
dc.contributor.authorSchreiber, N.J.
dc.contributor.authorNair, H.P.
dc.contributor.authorMiao, L.
dc.contributor.authorKawasaki, J.K.
dc.contributor.authorNelson, J.N.
dc.contributor.authorFaeth, B.D.
dc.contributor.authorLee, Y.
dc.contributor.authorGoodge, B.H.
dc.contributor.authorPamuk, B.
dc.contributor.authorFennie, C.J.
dc.contributor.authorKourkoutis, L.F.
dc.contributor.authorSchlom, D.G.
dc.contributor.authorShen, K.M.
dc.date.accessioned2023-03-24T08:27:03Z
dc.date.available2023-03-24T08:27:03Z
dc.date.issued2021
dc.description.abstractSuperconductivity is among the most fascinating and well-studied quantum states of matter. Despite over 100 years of research, a detailed understanding of how features of the normal-state electronic structure determine superconducting properties has remained elusive. For instance, the ability to deterministically enhance the superconducting transition temperature by design, rather than by serendipity, has been a long sought-after goal in condensed matter physics and materials science, but achieving this objective may require new tools, techniques and approaches. Here, we report the transmutation of a normal metal into a superconductor through the application of epitaxial strain. We demonstrate that synthesizing RuO2 thin films on (110)-oriented TiO2 substrates enhances the density of states near the Fermi level, which stabilizes superconductivity under strain, and suggests that a promising strategy to create new transition-metal superconductors is to apply judiciously chosen anisotropic strains that redistribute carriers within the low-energy manifold of d orbitals.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11752
dc.identifier.urihttp://dx.doi.org/10.34657/10786
dc.language.isoeng
dc.publisher[London] : Nature Publishing Group UK
dc.relation.doihttps://doi.org/10.1038/s41467-020-20252-7
dc.relation.essn2041-1723
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subject.ddc500
dc.subject.ddc540
dc.subject.ddc530
dc.subject.othermetaleng
dc.subject.otherrutheniumeng
dc.subject.otherruthenium dioxideeng
dc.subject.othertitanium dioxideeng
dc.subject.othertransition elementeng
dc.titleStrain-stabilized superconductivityeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorIKZ
wgl.subjectChemieger
wgl.subjectPhysikger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Strain-stabilized_superconductivity.pdf
Size:
3.53 MB
Format:
Adobe Portable Document Format
Description:
Collections