Size-resolved measurement of the mixing state of soot in the megacity Beijing, China: Diurnal cycle, aging and parameterization

dc.bibliographicCitation.firstPage4477eng
dc.bibliographicCitation.issue10eng
dc.bibliographicCitation.lastPage4491eng
dc.bibliographicCitation.volume12
dc.contributor.authorCheng, Y.F.
dc.contributor.authorSu, H.
dc.contributor.authorRose, D.
dc.contributor.authorGunthe, S.S.
dc.contributor.authorBerghof, M.
dc.contributor.authorWehner, B.
dc.contributor.authorAchtert, P.
dc.contributor.authorNowak, A.
dc.contributor.authorTakegawa, N.
dc.contributor.authorKondo, Y.
dc.contributor.authorShiraiwa, M.
dc.contributor.authorGong, Y.G.
dc.contributor.authorShao, M.
dc.contributor.authorHu, M.
dc.contributor.authorZhu, T.
dc.contributor.authorZhang, Y.H.
dc.contributor.authorCarmichael, G.R.
dc.contributor.authorWiedensohler, A.
dc.contributor.authorAndreae, M.O.
dc.contributor.authorPöschl, U.
dc.date.accessioned2017-11-21T21:29:21Z
dc.date.available2019-06-26T17:18:21Z
dc.date.issued2012
dc.description.abstractSoot particles are the most efficient light absorbing aerosol species in the atmosphere, playing an important role as a driver of global warming. Their climate effects strongly depend on their mixing state, which significantly changes their light absorbing capability and cloud condensation nuclei (CCN) activity. Therefore, knowledge about the mixing state of soot and its aging mechanism becomes an important topic in the atmospheric sciences. The size-resolved (30–320 nm diameter) mixing state of soot particles in polluted megacity air was measured at a suburban site (Yufa) during the CAREBeijing 2006 campaign in Beijing, using a volatility tandem differential mobility analyzer (VTDMA). Particles in this size range with non-volatile residuals at 300 °C were considered to be soot particles. On average, the number fraction of internally mixed soot in total soot particles (Fin), decreased from 0.80 to 0.57 when initial Dp increased from 30 to 320 nm. Further analysis reveals that: (1) Fin was well correlated with the aerosol hygroscopic mixing state measured by a CCN counter. More externally mixed soot particles were observed when particles showed more heterogeneous features with regard to hygroscopicity. (2) Fin had pronounced diurnal cycles. For particles in the accumulation mode (Dp at 100–320 nm), largest Fin were observed at noon time, with "apparent" turnover rates (kex → in) up to 7.8% h−1. (3) Fin was subject to competing effects of both aging and emissions. While aging increases Fin by converting externally mixed soot particles into internally mixed ones, emissions tend to reduce Fin by emitting more fresh and externally mixed soot particles. Similar competing effects were also found with air mass age indicators. (4) Under the estimated emission intensities, actual turnover rates of soot (kex → in) up to 20% h−1 were derived, which showed a pronounced diurnal cycle peaking around noon time. This result confirms that (soot) particles are undergoing fast aging/coating with the existing high levels of condensable vapors in the megacity Beijing. (5) Diurnal cycles of Fin were different between Aitken and accumulation mode particles, which could be explained by the faster growth of smaller Aitken mode particles into larger size bins. To improve the Fin prediction in regional/global models, we suggest parameterizing Fin by an air mass aging indicator, i.e., Fin = a + bx, where a and b are empirical coefficients determined from observations, and x is the value of an air mass age indicator. At the Yufa site in the North China Plain, fitted coefficients (a, b) were determined as (0.57, 0.21), (0.47, 0.21), and (0.52, 0.0088) for x (indicators) as [NOz]/[NOy], [E]/[X] ([ethylbenzene]/[m,p-xylene]) and ([IM] + [OM])/[EC] ([inorganic + organic matter]/[elemental carbon]), respectively. Such a parameterization consumes little additional computing time, but yields a more realistic description of Fin compared with the simple treatment of soot mixing state in regional/global models.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.identifier.urihttps://doi.org/10.34657/1276
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/554
dc.language.isoengeng
dc.publisherMünchen : European Geopyhsical Unioneng
dc.relation.doihttps://doi.org/10.5194/acp-12-4477-2012
dc.relation.ispartofseriesAtmospheric Chemistry and Physics, Volume 12, Issue 10, Page 4477-4491eng
dc.rights.licenseCC BY 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/eng
dc.subjectaerosoleng
dc.subjectagingeng
dc.subjectair masseng
dc.subjectdiurnal activityeng
dc.subjecthygroscopicityeng
dc.subjectmegacityeng
dc.subjectmixingeng
dc.subjectparameterizationeng
dc.subjectsooteng
dc.subjectsuburban areaeng
dc.subjecturban atmosphereeng
dc.subject.ddc550eng
dc.titleSize-resolved measurement of the mixing state of soot in the megacity Beijing, China: Diurnal cycle, aging and parameterizationeng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleAtmospheric Chemistry and Physicseng
tib.accessRightsopenAccesseng
wgl.contributorTROPOSeng
wgl.subjectGeowissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
acp-12-4477-2012-supplement.pdf
Size:
441.41 KB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
acp-12-4477-2012.pdf
Size:
1.62 MB
Format:
Adobe Portable Document Format
Description: