Ground states and concentration phenomena for the fractional Schrödinger equation

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2031
dc.contributor.authorFall, Mouhamed Moustapha
dc.contributor.authorMahmoudi, Fethi
dc.contributor.authorValdinoci, Enrico
dc.date.accessioned2016-03-24T17:37:04Z
dc.date.available2019-06-28T08:13:14Z
dc.date.issued2014
dc.description.abstractWe consider here solutions of the nonlinear fractional Schrödinger equation. We show that concentration points must be critical points for the potential. We also prove that, if the potential is coercive and has a unique global minimum, then ground states concentrate suitably at such minimal point. In addition, if the potential is radial, then the minimizer is unique.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn2198-5855
dc.identifier.urihttps://doi.org/10.34657/2459
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2916
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherFractional Laplacianeng
dc.subject.otherground stateseng
dc.subject.otherconcentration phenomenaeng
dc.subject.otheruniquenesseng
dc.titleGround states and concentration phenomena for the fractional Schrödinger equationeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
813654645.pdf
Size:
306.65 KB
Format:
Adobe Portable Document Format
Description: