Displacement and pressure reconstruction from magnetic resonance elastography images: Application to an in silico brain model

dc.bibliographicCitation.volume2933
dc.contributor.authorGalarce Marín, Felipe
dc.contributor.authorTabelow, Karsten
dc.contributor.authorPolzehl, Jörg
dc.contributor.authorPapanikas, Christos Panagiotis
dc.contributor.authorVavourakis, Vasileios
dc.contributor.authorLilaj, Ledia
dc.contributor.authorSack, Ingolf
dc.contributor.authorCaiazzo, Alfonso
dc.date.accessioned2022-07-08T13:04:39Z
dc.date.available2022-07-08T13:04:39Z
dc.date.issued2022
dc.description.abstractThis paper investigates a data assimilation approach for non-invasive quantification of intracranial pressure from partial displacement data, acquired through magnetic resonance elastography. Data assimilation is based on a parametrized-background data weak methodology, in which the state of the physical system tissue displacements and pressure fields is reconstructed from partially available data assuming an underlying poroelastic biomechanics model. For this purpose, a physics-informed manifold is built by sampling the space of parameters describing the tissue model close to their physiological ranges, to simulate the corresponding poroelastic problem, and compute a reduced basis. Displacements and pressure reconstruction is sought in a reduced space after solving a minimization problem that encompasses both the structure of the reduced-order model and the available measurements. The proposed pipeline is validated using synthetic data obtained after simulating the poroelastic mechanics on a physiological brain. The numerical experiments demonstrate that the framework can exhibit accurate joint reconstructions of both displacement and pressure fields. The methodology can be formulated for an arbitrary resolution of available displacement data from pertinent images. It can also inherently handle uncertainty on the physical parameters of the mechanical model by enlarging the physics-informed manifold accordingly. Moreover, the framework can be used to characterize, in silico, biomarkers for pathological conditions, by appropriately training the reduced-order model. A first application for the estimation of ventricular pressure as an indicator of abnormal intracranial pressure is shown in this contribution.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9691
dc.identifier.urihttps://doi.org/10.34657/8729
dc.language.isoeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.doihttps://doi.org/10.20347/WIAS.PREPRINT.2933
dc.relation.issn2198-5855
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subjectdata assimilationeng
dc.subjectstate estimationeng
dc.subjectfinite element methodeng
dc.subjectporoelasticityeng
dc.subjectreduced-order modelingeng
dc.subject.ddc510
dc.titleDisplacement and pressure reconstruction from magnetic resonance elastography images: Application to an in silico brain modeleng
dc.typereporteng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitlePreprint / Weierstraß-Institut für Angewandte Analysis und Stochastik
dcterms.extent27 S.
tib.accessRightsopenAccess
wgl.contributorWIAS
wgl.subjectMathematik
wgl.typeReport / Forschungsbericht / Arbeitspapier
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
wias_preprints_2933.pdf
Size:
9.75 MB
Format:
Adobe Portable Document Format
Description:
Collections