Lifetime vs. rate capability: Understanding the role of FEC and VC in high-energy Li-ion batteries with nano-silicon anodes

dc.bibliographicCitation.date2017
dc.bibliographicCitation.firstPage26
dc.bibliographicCitation.lastPage35
dc.bibliographicCitation.volume6
dc.contributor.authorJaumann, Tony
dc.contributor.authorBalach, Juan
dc.contributor.authorLangklotz, Ulrike
dc.contributor.authorSauchuk, Viktar
dc.contributor.authorFritsch, Marco
dc.contributor.authorMichaelis, Alexander
dc.contributor.authorTeltevskij, Valerij
dc.contributor.authorMikhailova, Daria
dc.contributor.authorOswald, Steffen
dc.contributor.authorKlose, Markus
dc.contributor.authorStephani, Guenter
dc.contributor.authorHauser, Ralf
dc.contributor.authorEckert, Jürgen
dc.contributor.authorGiebeler, Lars
dc.date.accessioned2022-12-23T08:00:12Z
dc.date.available2022-12-23T08:00:12Z
dc.date.issued2016
dc.description.abstractFluoroethylene carbonate (FEC) and vinylene carbonate (VC) are the most frequently used electrolyte components to enhance the lifetime of anode materials in Li-ion batteries, but for silicon it is still ambiguous when FEC or VC is more beneficial. Herein, a nanostructured silicon/carbon anode derived from low-cost HSiCl3 is tailored by the rational choice of the electrolyte component, to obtain an anode material outperforming current complex silicon structures. We demonstrate highly reversible areal capacities of up to 5 mA h/cm2 at 4.4 mg/cm2 mass loading, a specific capacity of 1280 mA h/gElectrode, a capacity retention of 81% after 500 deep-discharge cycles versus lithium metal and successful full-cell tests with high-voltage cathodes meeting the requirements for real application. Electrochemical impedance spectroscopy and post-mortem investigation provide new insights in tailoring the interfacial properties of silicon-based anodes for high performance anode materials based on an alloying mechanism with large volume changes. The role of fluorine in the FEC-derived interfacial layer is discussed in comparison with the VC-derived layer and possible degradation mechanisms are proposed. We believe that this study gives a valuable understanding and provides new strategies on the facile use of additives for highly reversible silicon anodes in Li-ion batteries.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/10717
dc.identifier.urihttp://dx.doi.org/10.34657/9753
dc.language.isoeng
dc.publisherAmsterdam : Elsevier
dc.relation.doihttps://doi.org/10.1016/j.ensm.2016.08.002
dc.relation.essn2405-8297
dc.relation.ispartofseriesEnergy storage materials 6 (2017)
dc.rights.licenseCC BY-NC-ND 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectFECeng
dc.subjectLi-ion batteryeng
dc.subjectSilicon anodeeng
dc.subjectVCeng
dc.subject.ddc333.7
dc.subject.ddc624
dc.titleLifetime vs. rate capability: Understanding the role of FEC and VC in high-energy Li-ion batteries with nano-silicon anodeseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleEnergy storage materials
tib.accessRightsopenAccesseng
wgl.contributorIFWD
wgl.subjectChemieger
wgl.subjectIngenieurwissenschaftenger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lifetime_v_rate_capability.pdf
Size:
1.44 MB
Format:
Adobe Portable Document Format
Description: