Long-time behavior for crystal dislocation dynamics
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
We describe the asymptotic states for the solutions of a nonlocal equation of evolutionary type, which have the physical meaning of the atom dislocation function in a periodic crystal. More precisely, we can describe accurately the smoothing effect on the dislocation function occurring slightly after a particle collision (roughly speaking, two opposite transitions layers average out) and, in this way, we can trap the atom dislocation function between a superposition of transition layers which, as time flows, approaches either a constant function or a single heteroclinic (depending on the algebraic properties of the orientations of the initial transition layers). The results are endowed of explicit and quantitative estimates and, as a byproduct, we show that the ODE systems of particles that governs the evolution of the transition layers does not admit stationary solutions (i.e., roughly speaking, transition layers always move).
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.