Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction

dc.bibliographicCitation.firstPage57
dc.bibliographicCitation.volume11
dc.contributor.authorHe, Yongmin
dc.contributor.authorTang, Pengyi
dc.contributor.authorHu, Zhili
dc.contributor.authorHe, Qiyuan
dc.contributor.authorZhu, Chao
dc.contributor.authorWang, Luqing
dc.contributor.authorZeng, Qingsheng
dc.contributor.authorGolani, Prafful
dc.contributor.authorGao, Guanhui
dc.contributor.authorFu, Wei
dc.contributor.authorHuang, Zhiqi
dc.contributor.authorGao, Caitian
dc.contributor.authorXia, Juan
dc.contributor.authorWang, Xingli
dc.contributor.authorWang, Xuewen
dc.contributor.authorZhu, Chao
dc.contributor.authorRamasse, Quentin M.
dc.contributor.authorZhang, Ao
dc.contributor.authorAn, Boxing
dc.contributor.authorZhang, Yongzhe
dc.contributor.authorMartí-Sánchez, Sara
dc.contributor.authorMorante, Joan Ramon
dc.contributor.authorWang, Liang
dc.contributor.authorTay, Beng Kang
dc.contributor.authorYakobson, Boris I.
dc.contributor.authorTrampert, Achim
dc.contributor.authorZhang, Hua
dc.contributor.authorWu, Minghong
dc.contributor.authorWang, Qi Jie
dc.contributor.authorArbiol, Jordi
dc.contributor.authorLiu, Zheng
dc.date.accessioned2022-10-24T07:53:23Z
dc.date.available2022-10-24T07:53:23Z
dc.date.issued2020
dc.description.abstractAtom-thin transition metal dichalcogenides (TMDs) have emerged as fascinating materials and key structures for electrocatalysis. So far, their edges, dopant heteroatoms and defects have been intensively explored as active sites for the hydrogen evolution reaction (HER) to split water. However, grain boundaries (GBs), a key type of defects in TMDs, have been overlooked due to their low density and large structural variations. Here, we demonstrate the synthesis of wafer-size atom-thin TMD films with an ultra-high-density of GBs, up to ~1012 cm−2. We propose a climb and drive 0D/2D interaction to explain the underlying growth mechanism. The electrocatalytic activity of the nanograin film is comprehensively examined by micro-electrochemical measurements, showing an excellent hydrogen-evolution performance (onset potential: −25 mV and Tafel slope: 54 mV dec−1), thus indicating an intrinsically high activation of the TMD GBs.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/10309
dc.identifier.urihttp://dx.doi.org/10.34657/9345
dc.language.isoeng
dc.publisher[London] : Nature Publishing Group UK
dc.relation.doihttps://doi.org/10.1038/s41467-019-13631-2
dc.relation.essn2041-1723
dc.relation.ispartofseriesNature Communications 11 (2020)eng
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectchemical phenomenaeng
dc.subjectchemical vapor depositioneng
dc.subjectelectrocatalysiseng
dc.subjectelectrochemical analysiseng
dc.subjectelectrochemistryeng
dc.subjectengineeringeng
dc.subjectgraineng
dc.subjecthigh resolution transmission electron microscopyeng
dc.subjecthydrogen evolutioneng
dc.subjectmathematical phenomenaeng
dc.subjectparticle sizeeng
dc.subjectRaman spectrometryeng
dc.subjectscanning electron microscopyeng
dc.subjecttransmission electron microscopyeng
dc.subject.ddc500eng
dc.titleEngineering grain boundaries at the 2D limit for the hydrogen evolution reactioneng
dc.typearticle
dc.typeText
dcterms.bibliographicCitation.journalTitleNature Communicationseng
tib.accessRightsopenAccess
wgl.contributorPDI
wgl.subjectPhysik
wgl.subjectIngenieurwissenschaften
wgl.typeZeitschriftenartikel
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41467-019-13631-2.pdf
Size:
8.06 MB
Format:
Adobe Portable Document Format
Description: