The full Keller-Segel model is well-posed on fairly general domains

Loading...
Thumbnail Image

Date

Volume

2312

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Link to publishers version

Abstract

In this paper we prove the well-posedness of the full Keller-Segel system, a quasilinear strongly coupled reaction-crossdiffusion system, in the spirit that it always admits a unique local-in-time solution in an adequate function space, provided that the initial values are suitably regular. Apparently, there exists no comparable existence result for the full Keller-Segel system up to now. The proof is carried out for general source terms and is based on recent nontrivial elliptic and parabolic regularity results which hold true even on fairly general spatial domains, combined with an abstract solution theorem for nonlocal quasilinear equations by Amann.
Nous considèrons le système de Keller et Segel dans son intégralité, un système quasilinéaire à réaction-diffusion fortement couplé. Le résultat principal montre que ce syst`eme est bien posé, cest-à-dire il admet une solution unique existant localement en temps à valeurs dans un espace fonctionnel approprié, pourvu que les valeurs initiales sont réguliers. Apparemment, il nexiste pas encore des résultats comparables. Pour la demonstration, nous utilisons des résultats récents de régularité elliptique et parabolique applicable à des domaines assez générals, combiné avec un théorème abstrait dAmann concernant les équations quasilinéaires non locales.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.