From atomistic tight-binding theory to macroscale drift–diffusion: Multiscale modeling and numerical simulation of uni-polar charge transport in (In,Ga)N devices with random fluctuations

dc.bibliographicCitation.firstPage065702eng
dc.bibliographicCitation.issue6eng
dc.bibliographicCitation.volume130eng
dc.contributor.authorO’Donovan, Michael
dc.contributor.authorChaudhuri, Debapriya
dc.contributor.authorStreckenbach, Timo
dc.contributor.authorFarrell, Patricio
dc.contributor.authorSchulz, Stefan
dc.contributor.authorKoprucki, Thomas
dc.date.accessioned2022-03-07T06:13:40Z
dc.date.available2022-03-07T06:13:40Z
dc.date.issued2021
dc.description.abstractRandom alloy fluctuations significantly affect the electronic, optical, and transport properties of (In,Ga)N-based optoelectronic devices. Transport calculations accounting for alloy fluctuations currently use a combination of modified continuum-based models, which neglect to a large extent atomistic effects. In this work, we present a model that bridges the gap between atomistic theory and macroscopic transport models. To do so, we combine atomistic tight-binding theory and continuum-based drift–diffusion solvers, where quantum corrections are included via the localization landscape method. We outline the ingredients of this framework in detail and present first results for uni-polar electron transport in single and multi- (In,Ga)N quantum well systems. Overall, our results reveal that both random alloy fluctuations and quantum corrections significantly affect the current–voltage characteristics of uni-polar electron transport in such devices. However, our investigations indicate that the importance of quantum corrections and random alloy fluctuations can be different for single and multi-quantum well systems.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8169
dc.identifier.urihttps://doi.org/10.34657/7208
dc.language.isoengeng
dc.publisherMelville, NY : American Inst. of Physicseng
dc.relation.doihttps://doi.org/10.1063/5.0059014
dc.relation.essn1089-7550
dc.relation.ispartofseriesJournal of applied physics : AIP's archival journal for significant new results in applied physics 130 (2021), Nr. 6eng
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectCurrent voltage characteristicseng
dc.subjectElectron transport propertieseng
dc.subjectOptoelectronic deviceseng
dc.subjectSemiconductor quantum wellseng
dc.subjectContinuum-based modelseng
dc.subjectElectron transporteng
dc.subjectMacroscopic transport modeleng
dc.subjectMulti-quantum-well systemseng
dc.subjectMulti-scale Modelingeng
dc.subjectQuantum well systemseng
dc.subjectTight binding theoryeng
dc.subjectTransport calculationeng
dc.subjectQuantum chemistryeng
dc.subject.ddc530eng
dc.titleFrom atomistic tight-binding theory to macroscale drift–diffusion: Multiscale modeling and numerical simulation of uni-polar charge transport in (In,Ga)N devices with random fluctuationseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleJournal of applied physics : AIP's archival journal for significant new results in applied physicseng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
From_atomistic_tight-binding_theory.pdf
Size:
3.15 MB
Format:
Adobe Portable Document Format
Description:
Collections