Engineering new limits to magnetostriction through metastability in iron-gallium alloys

dc.bibliographicCitation.firstPage2757
dc.bibliographicCitation.volume12
dc.contributor.authorMeisenheimer, P.B.
dc.contributor.authorSteinhardt, R.A.
dc.contributor.authorSung, S.H.
dc.contributor.authorWilliams, L.D.
dc.contributor.authorZhuang, S.
dc.contributor.authorNowakowski, M.E.
dc.contributor.authorNovakov, S.
dc.contributor.authorTorunbalci, M.M.
dc.contributor.authorPrasad, B.
dc.contributor.authorZollner, C. J.
dc.contributor.authorWang, Z.
dc.contributor.authorDawley, N.M.
dc.contributor.authorSchubert, J.
dc.contributor.authorHunter, A.H.
dc.contributor.authorManipatruni, S.
dc.contributor.authorNikonov, D.E.
dc.contributor.authorYoung, I.A.
dc.contributor.authorChen, L.Q.
dc.contributor.authorBokor, J.
dc.contributor.authorBhave, S.A.
dc.contributor.authorRamesh, R.
dc.contributor.authorHu, J.-M.
dc.contributor.authorKioupakis, E.
dc.contributor.authorHovden, R.
dc.contributor.authorSchlom, D.G.
dc.contributor.authorHeron, J.T.
dc.date.accessioned2023-03-27T11:12:03Z
dc.date.available2023-03-27T11:12:03Z
dc.date.issued2021
dc.description.abstractMagnetostrictive materials transduce magnetic and mechanical energies and when combined with piezoelectric elements, evoke magnetoelectric transduction for high-sensitivity magnetic field sensors and energy-efficient beyond-CMOS technologies. The dearth of ductile, rare-earth-free materials with high magnetostrictive coefficients motivates the discovery of superior materials. Fe1−xGax alloys are amongst the highest performing rare-earth-free magnetostrictive materials; however, magnetostriction becomes sharply suppressed beyond x = 19% due to the formation of a parasitic ordered intermetallic phase. Here, we harness epitaxy to extend the stability of the BCC Fe1−xGax alloy to gallium compositions as high as x = 30% and in so doing dramatically boost the magnetostriction by as much as 10x relative to the bulk and 2x larger than canonical rare-earth based magnetostrictors. A Fe1−xGax − [Pb(Mg1/3Nb2/3)O3]0.7−[PbTiO3]0.3 (PMN-PT) composite magnetoelectric shows robust 90° electrical switching of magnetic anisotropy and a converse magnetoelectric coefficient of 2.0 × 10−5 s m−1. When optimally scaled, this high coefficient implies stable switching at ~80 aJ per bit.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11760
dc.identifier.urihttp://dx.doi.org/10.34657/10794
dc.language.isoeng
dc.publisher[London] : Nature Publishing Group UK
dc.relation.doihttps://doi.org/10.1038/s41467-021-22793-x
dc.relation.essn2041-1723
dc.relation.ispartofseriesNature Communications 12 (2021)
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subjectalloyeng
dc.subjectgalliumeng
dc.subjectironeng
dc.subjectlanthanideeng
dc.subjectchemical compositioneng
dc.subject.ddc500
dc.subject.ddc530
dc.subject.ddc540
dc.titleEngineering new limits to magnetostriction through metastability in iron-gallium alloyseng
dc.typearticle
dc.typeText
dcterms.bibliographicCitation.journalTitleNature Communications
tib.accessRightsopenAccess
wgl.contributorIKZ
wgl.subjectChemieger
wgl.subjectPhysikger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Engineering_new_limits_to_magnetostriction.pdf
Size:
1.87 MB
Format:
Adobe Portable Document Format
Description:
Collections