Zero-one law for directional transience of one-dimensional random walks in dynamic random environments

Loading...
Thumbnail Image
Date
2015
Volume
2151
Issue
Journal
Series Titel
WIAS Preprints
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Link to publishers version
Abstract

We prove the trichotomy between transience to the right, transience to the left and recurrence of one-dimensional nearest-neighbour random walks in dynamic random environments under fairly general assumptions, namely: stationarity under space-time translations, ergodicity under spatial translations, and a mild ellipticity condition. In particular, the result applies to general uniformly elliptic models and also to a large class of non-uniformly elliptic cases that are i.i.d. in space and Markovian in time.

Description
Keywords
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.