Zero-one law for directional transience of one-dimensional random walks in dynamic random environments

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2151
dc.contributor.authorOrenshtein, Tal
dc.contributor.authorSantos, Renato Soares dos
dc.date.accessioned2016-12-13T10:46:43Z
dc.date.available2019-06-28T08:23:56Z
dc.date.issued2015
dc.description.abstractWe prove the trichotomy between transience to the right, transience to the left and recurrence of one-dimensional nearest-neighbour random walks in dynamic random environments under fairly general assumptions, namely: stationarity under space-time translations, ergodicity under spatial translations, and a mild ellipticity condition. In particular, the result applies to general uniformly elliptic models and also to a large class of non-uniformly elliptic cases that are i.i.d. in space and Markovian in time.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn2198-5855
dc.identifier.urihttps://doi.org/10.34657/3494
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3383
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherRandom walkeng
dc.subject.otherdynamic random environmenteng
dc.subject.otherzero-one laweng
dc.subject.otherdirectional transienceeng
dc.subject.otherrecurrenceeng
dc.titleZero-one law for directional transience of one-dimensional random walks in dynamic random environmentseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
868860476.pdf
Size:
179.02 KB
Format:
Adobe Portable Document Format
Description: