Dispersive stability of infinite dimensional Hamiltonian systems on lattices

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume1448
dc.contributor.authorMielke, Alexander
dc.contributor.authorPatz, Carsten
dc.date.accessioned2016-03-24T17:38:33Z
dc.date.available2019-06-28T08:04:30Z
dc.date.issued2009
dc.description.abstractWe derive dispersive stability results for oscillator chains like the FPU chain or the discrete Klein-Gordon chain. If the nonlinearity is of degree higher than 4, then small localized initial data decay like in the linear case. For this, we provide sharp decay estimates for the linearized problem using oscillatory integrals and avoiding the nonoptimal interpolation between different $ell^p$ spaceseng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn0946-8633
dc.identifier.urihttps://doi.org/10.34657/2255
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2197
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherDispersive decayeng
dc.subject.otheroscillatory integralseng
dc.subject.otherdiscrete Klein-Gordon equationeng
dc.subject.otherFPU chaineng
dc.titleDispersive stability of infinite dimensional Hamiltonian systems on latticeseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
664478255.pdf
Size:
775.87 KB
Format:
Adobe Portable Document Format
Description: