Heterogeneous ice nucleation on dust particles sourced from nine deserts worldwide - Part 1: Immersion freezing

dc.bibliographicCitation.firstPage15075
dc.bibliographicCitation.issue23
dc.bibliographicCitation.lastPage15095
dc.bibliographicCitation.volume16
dc.contributor.authorBoose, Yvonne
dc.contributor.authorWelti, André
dc.contributor.authorAtkinson, James
dc.contributor.authorRamelli, Fabiola
dc.contributor.authorDanielczok, Anja
dc.contributor.authorBingemer, Heinz G.
dc.contributor.authorPlötze, Michael
dc.contributor.authorSierau, Berko
dc.contributor.authorKanji, Zamin A.
dc.contributor.authorLohmann, Ulrike
dc.date.accessioned2022-05-11T06:29:22Z
dc.date.available2022-05-11T06:29:22Z
dc.date.issued2016
dc.description.abstractDesert dust is one of the most abundant ice nucleating particle types in the atmosphere. Traditionally, clay minerals were assumed to determine the ice nucleation ability of desert dust and constituted the focus of ice nucleation studies over several decades. Recently some feldspar species were identified to be ice active at much higher temperatures than clay minerals, redirecting studies to investigate the contribution of feldspar to ice nucleation on desert dust. However, so far no study has shown the atmospheric relevance of this mineral phase. For this study four dust samples were collected after airborne transport in the troposphere from the Sahara to different locations (Crete, the Peloponnese, Canary Islands, and the Sinai Peninsula). Additionally, 11 dust samples were collected from the surface from nine of the biggest deserts worldwide. The samples were used to study the ice nucleation behavior specific to different desert dusts. Furthermore, we investigated how representative surface-collected dust is for the atmosphere by comparing to the ice nucleation activity of the airborne samples. We used the IMCA-ZINC setup to form droplets on single aerosol particles which were subsequently exposed to temperatures between 233 and 250 K. Dust particles were collected in parallel on filters for offline cold-stage ice nucleation experiments at 253–263 K. To help the interpretation of the ice nucleation experiments the mineralogical composition of the dusts was investigated. We find that a higher ice nucleation activity in a given sample at 253 K can be attributed to the K-feldspar content present in this sample, whereas at temperatures between 238 and 245 K it is attributed to the sum of feldspar and quartz content present. A high clay content, in contrast, is associated with lower ice nucleation activity. This confirms the importance of feldspar above 250 K and the role of quartz and feldspars determining the ice nucleation activities at lower temperatures as found by earlier studies for monomineral dusts. The airborne samples show on average a lower ice nucleation activity than the surface-collected ones. Furthermore, we find that under certain conditions milling can lead to a decrease in the ice nucleation ability of polymineral samples due to the different hardness and cleavage of individual mineral phases causing an increase of minerals with low ice nucleation ability in the atmospherically relevant size fraction. Comparison of our data set to an existing desert dust parameterization confirms its applicability for climate models. Our results suggest that for an improved prediction of the ice nucleation ability of desert dust in the atmosphere, the modeling of emission and atmospheric transport of the feldspar and quartz mineral phases would be key, while other minerals are only of minor importance.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8940
dc.identifier.urihttps://doi.org/10.34657/7978
dc.language.isoengeng
dc.publisherKatlenburg-Lindau : EGU
dc.relation.doihttps://doi.org/10.5194/acp-16-15075-2016
dc.relation.essn1680-7324
dc.relation.ispartofseriesAtmospheric chemistry and physics 16 (2016), Nr. 23
dc.rights.licenseCC BY 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.subjectaerosoleng
dc.subjectatmospheric transporteng
dc.subjectdeserteng
dc.subjectdusteng
dc.subjectfeldspareng
dc.subjectfreezingeng
dc.subjectheterogeneityeng
dc.subjecticeeng
dc.subjectnucleationeng
dc.subjecttroposphereeng
dc.subjectSaharaeng
dc.subject.ddc550
dc.titleHeterogeneous ice nucleation on dust particles sourced from nine deserts worldwide - Part 1: Immersion freezingeng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleAtmospheric chemistry and physics
tib.accessRightsopenAccesseng
wgl.contributorTROPOSger
wgl.subjectGeowissenschaftenger
wgl.subjectChemieger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Heterogeneous_ice_nucleation_on_dust_particles_sourced_from_nine_deserts_worldwide_Part_1.pdf
Size:
2.31 MB
Format:
Adobe Portable Document Format
Description: