Microstructure formation and surface properties of a rhenanite-type glass-ceramic containing 6.0 wt% P2O5
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
The aim of this report was to characterize the microstructure formation of a rhenanite, NaCaPO4, glass-ceramic and to determine its surface properties. The composition of the material was (in wt%) 58.0 SiO2, 6.0 P2O5, 22.8 Na2O, 12.9 CaO, and 0.3 F. Nucleation and crystallization of the monolithic base glass was carried out at temperatures between 650 and 1000°C for one hour. To characterize the different microstructures of the glass-ceramics using scanning electron microscopy (SEM), a special sample with phosphoric acid was prepared. The control of microstructure formation resulted in the precipitation of isolated α-rhenanite crystals with a crystal size of 40 nm up to 1 μm and a crystal number density of 20 to more than 2000 particles per 100 μm2. The α-phase transformed into the β-phase at approximately 690 °C. The surface properties were determined by soaking the specimens in simulated body fluid for up to 10 d. In the process, the glass-ceramics exhibited a high surface activity. Morphological investigations after soaking showed ball-shaped hydroxyapatite-type crystals consisting of two half shells. The authors concluded that rhenanite crystals acted as heterogeneous nuclei for hydroxyapatite on the surface of the bioactive glass-ceramics. Therefore, this material was assumed to have the ability to bond to living bone.