Antiskyrmions and their electrical footprint in crystalline mesoscale structures of Mn1.4PtSn

dc.bibliographicCitation.firstPage102
dc.bibliographicCitation.journalTitleCommunications materialseng
dc.bibliographicCitation.volume3
dc.contributor.authorWinter, Moritz
dc.contributor.authorGoncalves, Francisco J. T.
dc.contributor.authorSoldatov, Ivan
dc.contributor.authorHe, Yangkun
dc.contributor.authorZúñiga Céspedes, Belén E.
dc.contributor.authorMilde, Peter
dc.contributor.authorLenz, Kilian
dc.contributor.authorHamann, Sandra
dc.contributor.authorUhlarz, Marc
dc.contributor.authorVir, Praveen
dc.contributor.authorKönig, Markus
dc.contributor.authorMoll, Philip J. W.
dc.contributor.authorSchlitz, Richard
dc.contributor.authorGoennenwein, Sebastian T. B.
dc.contributor.authorEng, Lukas M.
dc.contributor.authorSchäfer, Rudolf
dc.contributor.authorWosnitza, Joachim
dc.contributor.authorFelser, Claudia
dc.contributor.authorGayles, Jacob
dc.contributor.authorHelm, Toni
dc.date.accessioned2023-02-21T06:32:53Z
dc.date.available2023-02-21T06:32:53Z
dc.date.issued2022
dc.description.abstractSkyrmionic materials hold the potential for future information technologies, such as racetrack memories. Key to that advancement are systems that exhibit high tunability and scalability, with stored information being easy to read and write by means of all-electrical techniques. Topological magnetic excitations such as skyrmions and antiskyrmions, give rise to a characteristic topological Hall effect. However, the electrical detection of antiskyrmions, in both thin films and bulk samples has been challenging to date. Here, we apply magneto-optical microscopy combined with electrical transport to explore the antiskyrmion phase as it emerges in crystalline mesoscale structures of the Heusler magnet Mn1.4PtSn. We reveal the Hall signature of antiskyrmions in line with our theoretical model, comprising anomalous and topological components. We examine its dependence on the vertical device thickness, field orientation, and temperature. Our atomistic simulations and experimental anisotropy studies demonstrate the link between antiskyrmions and a complex magnetism that consists of competing ferromagnetic, antiferromagnetic, and chiral exchange interactions, not captured by micromagnetic simulations.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11452
dc.identifier.urihttp://dx.doi.org/10.34657/10486
dc.language.isoeng
dc.publisherLondon : Springer Nature
dc.relation.doihttps://doi.org/10.1038/s43246-022-00323-6
dc.relation.essn2662-4443
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subject.ddc600
dc.subject.otherBulk sampleseng
dc.subject.otherElectrical detectioneng
dc.subject.otherElectrical transporteng
dc.subject.otherHigh scalabilitieseng
dc.subject.otherHigh tunabilityeng
dc.subject.otherMagnetic excitationseng
dc.subject.otherMagneto-optical microscopyeng
dc.subject.otherMesoscale structureeng
dc.subject.otherSkyrmionseng
dc.subject.otherThin film and bulkeng
dc.subject.otherMagnetic properties and materialseng
dc.subject.otherSpintronicseng
dc.titleAntiskyrmions and their electrical footprint in crystalline mesoscale structures of Mn1.4PtSneng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorIFWD
wgl.subjectChemieger
wgl.subjectPhysikger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Antiskyrmions_and_their_electrical_footprint.pdf
Size:
2.19 MB
Format:
Adobe Portable Document Format
Description:
Collections