Semiconductor laser linewidth theory revisited

dc.bibliographicCitation.volume2838
dc.contributor.authorWenzel, Hans
dc.contributor.authorKantner, Markus
dc.contributor.authorRadziunas, Mindaugas
dc.contributor.authorBandelow, Uwe
dc.date.accessioned2022-07-05T14:10:47Z
dc.date.available2022-07-05T14:10:47Z
dc.date.issued2021
dc.description.abstractMore and more applications require semiconductor lasers distinguished not only by large modulation bandwidths or high output powers, but also by small spectral linewidths. The theoretical understanding of the root causes limiting the linewidth is therefore of great practical relevance. In this paper, we derive a general expression for the calculation of the spectral linewidth step by step in a self-contained manner. We build on the linewidth theory developed in the 1980s and 1990s but look from a modern perspective, in the sense that we choose as our starting points the time-dependent coupled-wave equations for the forward and backward propagating fields and an expansion of the fields in terms of the stationary longitudinal modes of the open cavity. As a result, we obtain rather general expressions for the longitudinal excess factor of spontaneous emission (K-factor) and the effective Alpha-factor including the effects of nonlinear gain (gain compression) and refractive index (Kerr effect), gain dispersion and longitudinal spatial hole burning in multi-section cavity structures. The effect of linewidth narrowing due to feedback from an external cavity often described by the so-called chirp reduction factor is also automatically included. We propose a new analytical formula for the dependence of the spontaneous emission on the carrier density avoiding the use of the population inversion factor. The presented theoretical framework is applied to a numerical study of a two-section distributed Bragg reflector laser.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9556
dc.identifier.urihttps://doi.org/10.34657/8594
dc.language.isoeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.doihttps://doi.org/10.20347/WIAS.PREPRINT.2838
dc.relation.hasversionhttps://doi.org/10.3390/app11136004
dc.relation.issn2198-5855
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subjectSemiconductor lasereng
dc.subjectspectral linewidtheng
dc.subjectcoupled-wave equationseng
dc.subjecttraveling wave modeleng
dc.subjectlongitudinal modeseng
dc.subjectnoiseeng
dc.subjectLangevin equationseng
dc.subjectHenry factoreng
dc.subjectPetermann factoreng
dc.subjectChirp reduction factoreng
dc.subjectpopulation inversion factoreng
dc.subject.ddc510
dc.titleSemiconductor laser linewidth theory revisitedeng
dc.typereporteng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitlePreprint / Weierstraß-Institut für Angewandte Analysis und Stochastik
dcterms.extent32 S.
tib.accessRightsopenAccess
wgl.contributorWIAS
wgl.subjectMathematik
wgl.typeReport / Forschungsbericht / Arbeitspapier
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
wias_preprints_2838.pdf
Size:
2.12 MB
Format:
Adobe Portable Document Format
Description:
Collections