On the structure of continuum thermodynamical diffusion fluxes -- A novel closure scheme and its relation to the Maxwell--Stefan and the Fick--Onsager approach

Loading...
Thumbnail Image
Date
2020
Volume
2749
Issue
Journal
Series Titel
WIAS Preprints
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract

This paper revisits the modeling of multicomponent diffusion within the framework of thermodynamics of irreversible processes. We briefly review the two well-known main approaches, leading to the generalized Fick--Onsager multicomponent diffusion fluxes or to the generalized Maxwell--Stefan equations. The latter approach has the advantage that the resulting fluxes are consistent with non-negativity of the partial mass densities for non-singular and non-degenerate Maxwell--Stefan diffusivities. On the other hand, this approach requires computationally expensive matrix inversions since the fluxes are only implicitly given. We propose and discuss a novel and more direct closure which avoids the inversion of the Maxwell--Stefan equations. It is shown that all three closures are actually equivalent under the natural requirement of positivity for the concentrations, thus revealing the general structure of continuum thermodynamical diffusion fluxes.

Description
Keywords
Citation
Bothe, D., & Druet, P.-É. (2020). On the structure of continuum thermodynamical diffusion fluxes -- A novel closure scheme and its relation to the Maxwell--Stefan and the Fick--Onsager approach (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik). Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik. https://doi.org//10.20347/WIAS.PREPRINT.2749
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.