On the structure of continuum thermodynamical diffusion fluxes -- A novel closure scheme and its relation to the Maxwell--Stefan and the Fick--Onsager approach
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
This paper revisits the modeling of multicomponent diffusion within the framework of thermodynamics of irreversible processes. We briefly review the two well-known main approaches, leading to the generalized Fick--Onsager multicomponent diffusion fluxes or to the generalized Maxwell--Stefan equations. The latter approach has the advantage that the resulting fluxes are consistent with non-negativity of the partial mass densities for non-singular and non-degenerate Maxwell--Stefan diffusivities. On the other hand, this approach requires computationally expensive matrix inversions since the fluxes are only implicitly given. We propose and discuss a novel and more direct closure which avoids the inversion of the Maxwell--Stefan equations. It is shown that all three closures are actually equivalent under the natural requirement of positivity for the concentrations, thus revealing the general structure of continuum thermodynamical diffusion fluxes.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.