Probing the reconstructed Fermi surface of antiferromagnetic BaFe2As2 in one domain

dc.bibliographicCitation.firstPage36eng
dc.bibliographicCitation.issue1eng
dc.bibliographicCitation.lastPage210eng
dc.bibliographicCitation.volume4eng
dc.contributor.authorWatson, M.D.
dc.contributor.authorDudin, P.
dc.contributor.authorRhodes, L.C.
dc.contributor.authorEvtushinsky, D.V.
dc.contributor.authorIwasawa, H.
dc.contributor.authorAswartham, S.
dc.contributor.authorWurmehl, S.
dc.contributor.authorBüchner, B.
dc.contributor.authorHoesch, M.
dc.contributor.authorKim, T.K.
dc.date.accessioned2020-07-18T06:12:40Z
dc.date.available2020-07-18T06:12:40Z
dc.date.issued2019
dc.description.abstractA fundamental part of the puzzle of unconventional superconductivity in the Fe-based superconductors is the understanding of the magnetic and nematic instabilities of the parent compounds. The issues of which of these can be considered the leading instability, and whether weak- or strong-coupling approaches are applicable, are both critical and contentious. Here, we revisit the electronic structure of BaFe2As2 using angle-resolved photoemission spectroscopy (ARPES). Our high-resolution measurements of samples “detwinned” by the application of a mechanical strain reveal a highly anisotropic 3D Fermi surface in the low-temperature antiferromagnetic phase. By comparison of the observed dispersions with ab initio calculations, we argue that overall it is magnetism, rather than orbital/nematic ordering, which is the dominant effect, reconstructing the electronic structure across the Fe 3d bandwidth. Finally, using a state-of-the-art nano-ARPES system, we reveal how the observed electronic dispersions vary in real space as the beam spot crosses domain boundaries in an unstrained sample, enabling the measurement of ARPES data from within single antiferromagnetic domains, and showing consistence with the effective mono-domain samples obtained by detwinning.eng
dc.description.sponsorshipLeibniz_Fondseng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3629
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5000
dc.language.isoengeng
dc.publisherLondon : Nature Publishing Groupeng
dc.relation.doihttps://doi.org/10.1038/s41535-019-0174-z
dc.relation.ispartofseriesnpj Quantum Materials 4 (2019), Nr. 1eng
dc.relation.issn2397-4648
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectsuperconductivityeng
dc.subjectnematic instabilitieseng
dc.subjectmagnetic instabilitieseng
dc.subject.ddc620eng
dc.titleProbing the reconstructed Fermi surface of antiferromagnetic BaFe2As2 in one domaineng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitlenpj Quantum Materialseng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Watson et al 2019, Probing the reconstructed Fermi surface.pdf
Size:
1.81 MB
Format:
Adobe Portable Document Format
Description: