Nanoscale mechanical surface properties of single crystalline martensitic Ni-Mn-Ga ferromagnetic shape memory alloys
dc.bibliographicCitation.firstPage | 33029 | eng |
dc.bibliographicCitation.journalTitle | New Journal of Physics | eng |
dc.bibliographicCitation.lastPage | 3169 | eng |
dc.bibliographicCitation.volume | 14 | eng |
dc.contributor.author | Jakob, A.M. | |
dc.contributor.author | Müller, M. | |
dc.contributor.author | Rauschenbach, B. | |
dc.contributor.author | Mayr, S.G. | |
dc.date.accessioned | 2020-09-29T09:09:43Z | |
dc.date.available | 2020-09-29T09:09:43Z | |
dc.date.issued | 2012 | |
dc.description.abstract | Located beyond the resolution limit of nanoindentation, contact resonance atomic force microscopy (CR-AFM) is employed for nano-mechanical surface characterization of single crystalline 14M modulated martensitic Ni-Mn-Ga (NMG) thin films grown by magnetron sputter deposition on (001) MgO substrates. Comparing experimental indentation moduli-obtained with CR-AFM-with theoretical predictions based on density functional theory (DFT) indicates the central role of pseudo plasticity and inter-martensitic phase transitions. Spatially highly resolved mechanical imaging enables the visualization of twin boundaries and allows for the assessment of their impact on mechanical behavior at the nanoscale. The CR-AFM technique is also briefly reviewed. Its advantages and drawbacks are carefully addressed. | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://doi.org/10.34657/4415 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/5786 | |
dc.language.iso | eng | eng |
dc.publisher | Bristol : IOP | eng |
dc.relation.doi | https://doi.org/10.1088/1367-2630/14/3/033029 | |
dc.relation.issn | 1367-2630 | |
dc.rights.license | CC BY-NC-SA 3.0 Unported | eng |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/3.0/ | eng |
dc.subject.ddc | 530 | eng |
dc.subject.other | Contact resonance | eng |
dc.subject.other | Density functional theories (DFT) | eng |
dc.subject.other | Ferromagnetic shape memory alloy | eng |
dc.subject.other | Magnetron sputter deposition | eng |
dc.subject.other | Mechanical behavior | eng |
dc.subject.other | Mechanical imaging | eng |
dc.subject.other | Mechanical surface | eng |
dc.subject.other | MgO substrate | eng |
dc.subject.other | Nano scale | eng |
dc.subject.other | Ni-Mn-Ga | eng |
dc.subject.other | Pseudoplasticity | eng |
dc.subject.other | Resolution limits | eng |
dc.subject.other | Single-crystalline | eng |
dc.subject.other | Surface characterization | eng |
dc.subject.other | Theoretical prediction | eng |
dc.subject.other | Twin boundaries | eng |
dc.subject.other | Atomic force microscopy | eng |
dc.subject.other | Crystalline materials | eng |
dc.subject.other | Gallium | eng |
dc.subject.other | Gallium alloys | eng |
dc.subject.other | Manganese | eng |
dc.subject.other | Nanoindentation | eng |
dc.subject.other | Nanotechnology | eng |
dc.subject.other | Surface properties | eng |
dc.subject.other | Visualization | eng |
dc.subject.other | Mechanical properties | eng |
dc.title | Nanoscale mechanical surface properties of single crystalline martensitic Ni-Mn-Ga ferromagnetic shape memory alloys | eng |
dc.type | Article | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | IOM | eng |
wgl.subject | Physik | eng |
wgl.type | Zeitschriftenartikel | eng |