A PDE-constrained optimization approach for topology optimization of strained photonic devices
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
Recent studies have demonstrated the potential of using tensile-strained, doped Germanium as a means of developing an integrated light source for (amongst other things) future microprocessors. In this work, a multi-material phase-field approach to determine the optimal material configuration within a so-called Germanium-on-Silicon microbridge is considered. Here, an optimal configuration is one in which the strain in a predetermined minimal optical cavity within the Germanium is maximized according to an appropriately chosen objective functional. Due to manufacturing requirements, the emphasis here is on the cross-section of the device; i.e. a socalled aperture design. Here, the optimization is modeled as a non-linear optimization problem with partial differential equation (PDE) and manufacturing constraints. The resulting problem is analyzed and solved numerically. The theory portion includes a proof of existence of an optimal topology, differential sensitivity analysis of the displacement with respect to the topology, and the derivation of first and second-order optimality conditions. For the numerical experiments, an array of first and second-order solution algorithms in function-space are adapted to the current setting, tested, and compared. The numerical examples yield designs for which a significant increase in strain (as compared to an intuitive empirical design) is observed.
Description
Keywords
Citation
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.