A one-dimensional symmetry result for solutions of an integral equation of convolution type
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 2115 | |
dc.contributor.author | Hamel, François | |
dc.contributor.author | Valdinoci, Enrico | |
dc.date.accessioned | 2016-12-13T10:46:40Z | |
dc.date.available | 2019-06-28T08:23:05Z | |
dc.date.issued | 2015 | |
dc.description.abstract | We consider an integral equation in the plane, in which the leading operator is of convolution type, and we prove that monotone (or stable) solutions are necessarily one-dimensional. | eng |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 2198-5855 | |
dc.identifier.uri | https://doi.org/10.34657/1870 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/3349 | |
dc.language.iso | eng | eng |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | eng |
dc.relation.issn | 0946-8633 | eng |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.subject.other | Integral operators | eng |
dc.subject.other | convolution kernels | eng |
dc.subject.other | one-dimensional symmetry | eng |
dc.subject.other | De Giorgi Conjecture | eng |
dc.title | A one-dimensional symmetry result for solutions of an integral equation of convolution type | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | WIAS | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 86866958X.pdf
- Size:
- 196.59 KB
- Format:
- Adobe Portable Document Format
- Description: