On the evolution by fractional mean curvature
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 2183 | |
dc.contributor.author | Sáez, Mariel | |
dc.contributor.author | Valdinoci, Enrico | |
dc.date.accessioned | 2016-12-13T10:46:53Z | |
dc.date.available | 2019-06-28T08:26:45Z | |
dc.date.issued | 2015 | |
dc.description.abstract | In this paper we study smooth solutions to a fractional mean curvature flow equation. We establish a comparison principle and consequences such as uniqueness and finite extinction time for compact solutions. We also establish evolutions equations for fractional geometric quantities that yield preservation of certain quantities (such as positive fractional curvature) and smoothness of graphical evolutions. | eng |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.uri | https://doi.org/10.34657/2863 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/3497 | |
dc.language.iso | eng | eng |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | eng |
dc.relation.issn | 0946-8633 | eng |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.subject.other | Nonlocal mean curvature | eng |
dc.subject.other | geometric motions | eng |
dc.subject.other | evolving surfaces | eng |
dc.title | On the evolution by fractional mean curvature | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | WIAS | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 86924941X.pdf
- Size:
- 332.82 KB
- Format:
- Adobe Portable Document Format
- Description: