Quenching of material dependence in few-cycle driven electron acceleration from nanoparticles under many-particle charge interaction

dc.bibliographicCitation.date2017
dc.bibliographicCitation.firstPage995
dc.bibliographicCitation.issue10-11
dc.bibliographicCitation.journalTitleJournal of modern optics : published in accordance with the guidelines of the European Physical Societyeng
dc.bibliographicCitation.lastPage1003
dc.bibliographicCitation.volume64
dc.contributor.authorRupp, Philipp
dc.contributor.authorSeiffert, Lennart
dc.contributor.authorLiu, Qingcao
dc.contributor.authorSüßmann, Frederik
dc.contributor.authorAhn, Byungnam
dc.contributor.authorFörg, Benjamin
dc.contributor.authorSchäfer, Christian G.
dc.contributor.authorGallei, Markus
dc.contributor.authorMondes, Valerie
dc.contributor.authorKessel, Alexander
dc.contributor.authorTrushin, Sergei
dc.contributor.authorGraf, Christina
dc.contributor.authorRühl, Eckart
dc.contributor.authorLee, Jinwoo
dc.contributor.authorKim, Min Su
dc.contributor.authorKim, Dong Eon
dc.contributor.authorFennel, Thomas
dc.contributor.authorKling, Matthias F.
dc.contributor.authorZherebtsov, Sergey
dc.date.accessioned2023-01-06T07:09:21Z
dc.date.available2023-01-06T07:09:21Z
dc.date.issued2016-12-25
dc.description.abstractThe excitation of nanoscale near-fields with ultrashort and intense laser pulses of well-defined waveform enables strongly spatially and temporally localized electron emission, opening up the possibility for the generation of attosecond electron pulses. Here, we investigate the electron photoemission from isolated nanoparticles of different materials in few-cycle laser fields at intensities where the Coulomb field of the ionized electrons and residual ions significantly contribute to the electron acceleration process. The dependences of the electron cut-off energy on the material’s dielectric properties and electron binding energy are investigated systematically in both experiments and semi-classical simulations. We find that for sufficiently high near-field intensities the material dependence of the acceleration in the enhanced near-fields is quenched by many-particle charge-interaction.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/10794
dc.identifier.urihttp://dx.doi.org/10.34657/9820
dc.language.isoeng
dc.publisherLondon [u.a.] : Taylor & Francis
dc.relation.doihttps://doi.org/10.1080/09500340.2016.1267272
dc.relation.essn1362-3044
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc530
dc.subject.ddc620
dc.subject.otherCarrier-envelope phaseeng
dc.subject.otherNanoparticleseng
dc.subject.otherStrong-field phenomenaeng
dc.subject.otherUltrafast nanophysicseng
dc.titleQuenching of material dependence in few-cycle driven electron acceleration from nanoparticles under many-particle charge interactioneng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMBI
wgl.subjectPhysikger
wgl.subjectIngenieurwissenschaftenger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Quenching_of_material_dependence.pdf
Size:
1.82 MB
Format:
Adobe Portable Document Format
Description: