Berry curvature associated to Fermi arcs in continuum and lattice Weyl systems

dc.bibliographicCitation.articleNumber033007
dc.bibliographicCitation.issue3
dc.bibliographicCitation.journalTitlePhysical Review Research
dc.bibliographicCitation.volume5
dc.contributor.authorWawrzik, Dennis
dc.contributor.authorvan den Brink, Jeroen
dc.date.accessioned2024-02-06T15:36:39Z
dc.date.available2024-02-06T15:36:39Z
dc.date.issued2023
dc.description.abstractRecently it has been discovered that in Weyl semimetals the surface state Berry curvature can diverge in certain regions of momentum. This occurs in a continuum description of tilted Weyl cones, which for a slab geometry results in the Berry curvature dipole associated to the surface Fermi arcs growing linearly with slab thickness. Here we investigate analytically incarnations of lattice Weyl semimetals and demonstrate this diverging surface Berry curvature by solving for their surface states and connect these to their continuum descriptions. We show how the shape of the Fermi arc and the Berry curvature hot-line is determined and confirm the 1/k2 divergence of the Berry curvature at the end of the Fermi arc as well as the finite-size effects for the Berry curvature and its dipole, using finite-slab calculations and surface Green's function methods. We further establish that apart from affecting the second-order, nonlinear Hall effect, the divergent Berry curvature has a strong impact on other transport phenomena as the Magnus-Hall effect and the nonlinear chiral anomaly.eng
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/14472
dc.identifier.urihttps://doi.org/10.34657/13503
dc.language.isoeng
dc.publisherCollege Park, MD : APS
dc.relation.doihttps://doi.org/10.1103/PhysRevResearch.5.033007
dc.relation.essn2643-1564
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectFruitseng
dc.subjectHall effecteng
dc.subject.ddc530
dc.titleBerry curvature associated to Fermi arcs in continuum and lattice Weyl systemseng
dc.typearticle
dc.typeText
tib.accessRightsopenAccess
wgl.contributorIFWD
wgl.subjectPhysik
wgl.typeZeitschriftenartikel
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
30_PhysRevResearch.5.033007.pdf
Size:
612.39 KB
Format:
Adobe Portable Document Format
Description:
Collections