Towards low-temperature processing of efficient γ-CsPbI3 perovskite solar cells

dc.bibliographicCitation.firstPage16115
dc.bibliographicCitation.issue30
dc.bibliographicCitation.lastPage16126
dc.bibliographicCitation.volume11
dc.contributor.authorZhang, Zongbao
dc.contributor.authorJi, Ran
dc.contributor.authorHofstetter, Yvonne J.
dc.contributor.authorDeconinck, Marielle
dc.contributor.authorBrunner, Julius
dc.contributor.authorLi, Yanxiu
dc.contributor.authorAn, Qingzhi
dc.contributor.authorVaynzof, Yana
dc.date.accessioned2024-04-15T06:42:01Z
dc.date.available2024-04-15T06:42:01Z
dc.date.issued2023
dc.description.abstractInorganic cesium lead iodide (CsPbI3) perovskite solar cells (PSCs) have attracted enormous attention due to their excellent thermal stability and optical bandgap (∼1.73 eV), well-suited for tandem device applications. However, achieving high-performance photovoltaic devices processed at low temperatures is still challenging. Here we reported a new method for the fabrication of high-efficiency and stable γ-CsPbI3 PSCs at lower temperatures than was previously possible by introducing the long-chain organic cation salt ethane-1,2-diammonium iodide (EDAI2) and regulating the content of lead acetate (Pb(OAc)2) in the perovskite precursor solution. We find that EDAI2 acts as an intermediate that can promote the formation of γ-CsPbI3, while excess Pb(OAc)2 can further stabilize the γ-phase of CsPbI3 perovskite. Consequently, improved crystallinity and morphology and reduced carrier recombination are observed in the CsPbI3 films fabricated by the new method. By optimizing the hole transport layer of CsPbI3 inverted architecture solar cells, we demonstrate efficiencies of up to 16.6%, surpassing previous reports examining γ-CsPbI3 in inverted PSCs. Notably, the encapsulated solar cells maintain 97% of their initial efficiency at room temperature and under dim light for 25 days, demonstrating the synergistic effect of EDAI2 and Pb(OAc)2 in stabilizing γ-CsPbI3 PSCs.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/14528
dc.identifier.urihttps://doi.org/10.34657/13559
dc.language.isoeng
dc.publisherLondon [u.a.] : RSC
dc.relation.doihttps://doi.org/10.1039/d3ta03249c
dc.relation.essn2050-7496
dc.relation.ispartofseriesJournal of Materials Chemistry A 11 (2023), Nr. 30
dc.relation.issn2050-7488
dc.rights.licenseCC BY 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/3.0
dc.subjectCesium compoundseng
dc.subjectCrystallinityeng
dc.subjectEfficiencyeng
dc.subjectIodine compoundseng
dc.subjectLayered semiconductorseng
dc.subjectPerovskiteeng
dc.subjectPerovskite solar cellseng
dc.subjectTemperatureeng
dc.subjectDevice applicationeng
dc.subjectHigher efficiencyeng
dc.subjectInorganicseng
dc.subjectLong chainseng
dc.subjectLow temperature processingeng
dc.subjectLows-temperatureseng
dc.subjectOptical-bandgapeng
dc.subjectPerformanceeng
dc.subjectPhotovoltaic deviceseng
dc.subjectTandem deviceseng
dc.subjectLead compoundseng
dc.subject.ddc540
dc.subject.ddc530
dc.titleTowards low-temperature processing of efficient γ-CsPbI3 perovskite solar cellseng
dc.typearticle
dc.typeText
dcterms.bibliographicCitation.journalTitleJournal of Materials Chemistry A
tib.accessRightsopenAccess
wgl.contributorIFWD
wgl.subjectChemieger
wgl.subjectPhysikger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
d3ta03249c.pdf
Size:
1.55 MB
Format:
Adobe Portable Document Format
Description:
Collections