Semantic segmentation of non-linear multimodal images for disease grading of inflammatory bowel disease: A segnet-based application

dc.bibliographicCitation.bookTitleICPRAM 2019 : proceedings of the 8th International Conference on Pattern Recognition Applications and Methodseng
dc.bibliographicCitation.firstPage396
dc.bibliographicCitation.lastPage405
dc.contributor.authorPradhan, Pranita
dc.contributor.authorMeyer, Tobias
dc.contributor.authorVieth, Michael
dc.contributor.authorStallmach, Andreas
dc.contributor.authorWaldner, Maximilian
dc.contributor.authorSchmitt, Michael
dc.contributor.authorPopp, Juergen
dc.contributor.authorBocklitz, Thomas
dc.contributor.editorDe Marsico, Maria
dc.contributor.editorSanniti di Baja, Gabriella
dc.contributor.editorFred, Ana
dc.date.accessioned2022-09-20T08:43:55Z
dc.date.available2022-09-20T08:43:55Z
dc.date.issued2019
dc.description.abstractNon-linear multimodal imaging, the combination of coherent anti-stokes Raman scattering (CARS), two-photon excited fluorescence (TPEF) and second harmonic generation (SHG), has shown its potential to assist the diagnosis of different inflammatory bowel diseases (IBDs). This label-free imaging technique can support the ‘gold-standard’ techniques such as colonoscopy and histopathology to ensure an IBD diagnosis in clinical environment. Moreover, non-linear multimodal imaging can measure biomolecular changes in different tissue regions such as crypt and mucosa region, which serve as a predictive marker for IBD severity. To achieve a real-time assessment of IBD severity, an automatic segmentation of the crypt and mucosa regions is needed. In this paper, we semantically segment the crypt and mucosa region using a deep neural network. We utilized the SegNet architecture (Badrinarayanan et al., 2015) and compared its results with a classical machine learning approach. Our trained SegNet mod el achieved an overall F1 score of 0.75. This model outperformed the classical machine learning approach for the segmentation of the crypt and mucosa region in our study.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/10222
dc.identifier.urihttp://dx.doi.org/10.34657/9257
dc.language.isoengeng
dc.publisher[Sétubal] : SCITEPRESS - Science and Technology Publications Lda.
dc.relation.doihttps://doi.org/10.5220/0007314003960405
dc.relation.essn2184-4313
dc.relation.isbn978-989-758-351-3
dc.rights.licenseCC BY-NC-ND 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc610
dc.subject.ddc004
dc.subject.gndKonferenzschriftger
dc.subject.otherInflammatory Bowel Diseaseeng
dc.subject.otherNon-linear Multimodal Imagingeng
dc.subject.otherSemantic Segmentationeng
dc.titleSemantic segmentation of non-linear multimodal images for disease grading of inflammatory bowel disease: A segnet-based applicationeng
dc.typeBookParteng
dc.typeTexteng
dcterms.event8th International Conference on Pattern Recognition Applications and Methods (ICPRAM), February 19-21, 2019, Prague, Czech Republic
tib.accessRightsopenAccesseng
wgl.contributorIPHTger
wgl.subjectMedizin, Gesundheitger
wgl.subjectInformatikger
wgl.typeBuchkapitel / Sammelwerksbeitragger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
73140.pdf
Size:
6.26 MB
Format:
Adobe Portable Document Format
Description: