Elucidation of Plasma-induced Chemical Modifications on Glutathione and Glutathione Disulphide

dc.bibliographicCitation.firstPage13828
dc.bibliographicCitation.journalTitleScientific reportseng
dc.bibliographicCitation.volume7
dc.contributor.authorKlinkhammer, Christina
dc.contributor.authorVerlackt, Christof
dc.contributor.authorŚmiłowicz, Dariusz
dc.contributor.authorKogelheide, Friederike
dc.contributor.authorBogaerts, Annemie
dc.contributor.authorMetzler-Nolte, Nils
dc.contributor.authorStapelmann, Katharina
dc.contributor.authorHavenith, Martina
dc.contributor.authorLackmann, Jan-Wilm
dc.date.accessioned2023-01-10T10:44:20Z
dc.date.available2023-01-10T10:44:20Z
dc.date.issued2017-10-23
dc.description.abstractCold atmospheric pressure plasmas are gaining increased interest in the medical sector and clinical trials to treat skin diseases are underway. Plasmas are capable of producing several reactive oxygen and nitrogen species (RONS). However, there are open questions how plasma-generated RONS interact on a molecular level in a biological environment, e.g. cells or cell components. The redox pair glutathione (GSH) and glutathione disulphide (GSSG) forms the most important redox buffer in organisms responsible for detoxification of intracellular reactive species. We apply Raman spectroscopy, mass spectrometry, and molecular dynamics simulations to identify the time-dependent chemical modifications on GSH and GSSG that are caused by dielectric barrier discharge under ambient conditions. We find GSSG, S-oxidised glutathione species, and S-nitrosoglutathione as oxidation products with the latter two being the final products, while glutathione sulphenic acid, glutathione sulphinic acid, and GSSG are rather reaction intermediates. Experiments using stabilized pH conditions revealed the same main oxidation products as were found in unbuffered solution, indicating that the dominant oxidative or nitrosative reactions are not influenced by acidic pH. For more complex systems these results indicate that too long treatment times can cause difficult-to-handle modifications to the cellular redox buffer which can impair proper cellular function.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/10825
dc.identifier.urihttp://dx.doi.org/10.34657/9851
dc.language.isoeng
dc.publisher[London] : Macmillan Publishers Limited, part of Springer Nature
dc.relation.doihttps://doi.org/10.1038/s41598-017-13041-8
dc.relation.essn2045-2322
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subject.ddc500
dc.subject.ddc600
dc.subject.otherglutathioneeng
dc.subject.otherglutathione disulfideeng
dc.subject.otherreactive nitrogen specieseng
dc.subject.otherreactive oxygen metaboliteeng
dc.subject.otherchemistryeng
dc.subject.otherdrug effecteng
dc.subject.otherhumaneng
dc.subject.othermass spectrometryeng
dc.subject.othermetabolismeng
dc.subject.otheroxidation reduction reactioneng
dc.subject.otheroxidative stresseng
dc.subject.otherpharmacologyeng
dc.subject.otherplasma gaseng
dc.subject.otherHumanseng
dc.subject.otherReactive Oxygen Specieseng
dc.titleElucidation of Plasma-induced Chemical Modifications on Glutathione and Glutathione Disulphideeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorINP
wgl.subjectPhysikger
wgl.subjectChemieger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Elucidation_of_Plasma-induced_Chemical_Modifications.pdf
Size:
1.95 MB
Format:
Adobe Portable Document Format
Description:
Collections