SERS and plasmonic heating efficiency from anisotropic core/satellite superstructures

dc.bibliographicCitation.firstPage17655eng
dc.bibliographicCitation.issue38eng
dc.bibliographicCitation.journalTitleNanoscaleeng
dc.bibliographicCitation.lastPage17663eng
dc.bibliographicCitation.volume11eng
dc.contributor.authorKuttner, Christian
dc.contributor.authorHöller, Roland P. M.
dc.contributor.authorQuintanilla, Marta
dc.contributor.authorSchnepf, Max J.
dc.contributor.authorDulle, Martin
dc.contributor.authorFery, Andreas
dc.contributor.authorLiz-Marzán, Luis M.
dc.date.accessioned2022-11-18T07:39:46Z
dc.date.available2022-11-18T07:39:46Z
dc.date.issued2019
dc.description.abstractThe optical properties of nanoparticle assemblies can be tailored via hybridization of plasmon modes. Isotropic core/satellite superstructures made of spherical nanoparticles are known to exhibit coupled modes with a strongly scattering (radiative) character, and provide hot spots yielding high activity in surface-enhanced Raman scattering (SERS). However, to complement this functionality with plasmonic heating, additional absorbing (non-radiative) modes are required. We introduce herein anisotropic superstructures formed by decorating a central nanorod with spherical satellite nanoparticles, which feature two coupled modes that allow application for both SERS and heating. On the basis of diffuse reflectance spectroscopy, small-angle X-ray scattering (SAXS), and electromagnetic simulations, the origin of the coupled modes is disclosed and thus serves as a basis toward alternative designs of functional superstructures. This work represents a proof-of-principle for the combination of high SERS efficiency with efficient plasmonic heating by near-infrared irradiation.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/10365
dc.identifier.urihttp://dx.doi.org/10.34657/9401
dc.language.isoengeng
dc.publisherCambridge : RSC Publ.eng
dc.relation.doihttps://doi.org/10.1039/c9nr06102a
dc.relation.essn2040-3372
dc.rights.licenseCC BY-NC 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/eng
dc.subject.ddc600eng
dc.subject.otherAnisotropyeng
dc.subject.otherEfficiencyeng
dc.subject.otherElectromagnetic simulationeng
dc.subject.otherInfrared deviceseng
dc.subject.otherNanoparticleseng
dc.subject.otherNanorodseng
dc.subject.otherOptical propertieseng
dc.subject.otherPlasmonicseng
dc.subject.otherRaman scatteringeng
dc.subject.otherSurface scatteringeng
dc.subject.otherX ray scatteringeng
dc.titleSERS and plasmonic heating efficiency from anisotropic core/satellite superstructureseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIPFeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SERS_and_plasmonic_heating_efficiency.pdf
Size:
2.56 MB
Format:
Adobe Portable Document Format
Description:
Collections