SERS and plasmonic heating efficiency from anisotropic core/satellite superstructures

Loading...
Thumbnail Image
Date
2019
Authors
Kuttner, Christian
Höller, Roland P. M.
Quintanilla, Marta
Schnepf, Max J.
Dulle, Martin
Fery, Andreas
Liz-Marzán, Luis M.
Volume
11
Issue
38
Journal
Nanoscale
Series Titel
Book Title
Publisher
Cambridge : RSC Publ.
Link to publishers version
Abstract

The optical properties of nanoparticle assemblies can be tailored via hybridization of plasmon modes. Isotropic core/satellite superstructures made of spherical nanoparticles are known to exhibit coupled modes with a strongly scattering (radiative) character, and provide hot spots yielding high activity in surface-enhanced Raman scattering (SERS). However, to complement this functionality with plasmonic heating, additional absorbing (non-radiative) modes are required. We introduce herein anisotropic superstructures formed by decorating a central nanorod with spherical satellite nanoparticles, which feature two coupled modes that allow application for both SERS and heating. On the basis of diffuse reflectance spectroscopy, small-angle X-ray scattering (SAXS), and electromagnetic simulations, the origin of the coupled modes is disclosed and thus serves as a basis toward alternative designs of functional superstructures. This work represents a proof-of-principle for the combination of high SERS efficiency with efficient plasmonic heating by near-infrared irradiation.

Description
Keywords
License
CC BY-NC 3.0 Unported