A chemical-kinetic model of DBDs in Ar-H2O mixtures

dc.bibliographicCitation.articleNumber2000028
dc.bibliographicCitation.firstPage2000028
dc.bibliographicCitation.issue8
dc.bibliographicCitation.journalTitlePlasma Processes and Polymers
dc.bibliographicCitation.volume17
dc.contributor.authorKlages, Claus‐Peter
dc.date.accessioned2025-02-26T13:59:03Z
dc.date.available2025-02-26T13:59:03Z
dc.date.issued2020
dc.description.abstractA simplified chemical-kinetic model was applied to Ar-H2O dielectric-barrier discharges (DBDs), presuming that dissociation processes are only due to energy transfer from excited Ar species. Good agreement was obtained between the densities of HO, H2, and O2 and experimental data from the literature, whereas a discrepancy for H2O2 could not be explained. The model is useful for designing DBD reactors and process development. Steady-state densities of H atoms increase with decreasing fractions of (Formula presented.) which should be kept below 0.1% to obtain a large zone of virtually constant and large H-atom density in the DBD reactor, whereas the HO density is hardly affected by (Formula presented.). O2 contaminations must be kept well below 100 ppm in to attain maximum H-atom densities.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/18610
dc.identifier.urihttps://doi.org/10.34657/17629
dc.language.isoeng
dc.publisherWeinheim : Wiley-VCH
dc.relation.doihttps://doi.org/10.1002/ppap.202000028
dc.relation.essn1612-8869
dc.relation.issn1612-8850
dc.rights.licenseCC BY-NC-ND 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subject.ddc530
dc.subject.ddc540
dc.subject.otherargon-watereng
dc.subject.otherdielectric-barrier dischargeseng
dc.subject.otherhydrogen atoms, HOeng
dc.subject.otherradicalseng
dc.titleA chemical-kinetic model of DBDs in Ar-H2O mixtureseng
dc.typeArticle
dc.typeText
tib.accessRightsopenAccess
wgl.contributorINP
wgl.subjectPhysikger
wgl.subjectChemieger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A-chemical‐kinetic-model.pdf
Size:
490.44 KB
Format:
Adobe Portable Document Format
Description:
Collections