Fixed domain transformations and split-step finite difference schemes for nonlinear black-scholes equations for American options

Loading...
Thumbnail Image

Date

Volume

1328

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Link to publishers version

Abstract

Due to transaction costs, illiquid markets, large investors or risks from an unprotected portfolio the assumptions in the classical Black-Scholes model become unrealistic and the model results in strongly or fully nonlinear, possibly degenerate, parabolic diffusion-convection equations, where the stock price, volatility, trend and option price may depend on the time, the stock price or the option price itself. In this chapter we will be concerned with several models from the most relevant class of nonlinear Black-Scholes equations for American options with a volatility depending on different factors, such as the stock price, the time, the option price and its derivatives. We will analytically approach the option price by following the ideas proposed by evcovic and transforming the free boundary problem into a fully nonlinear nonlocal parabolic equation defined on a fixed, but unbounded domain. Finally, we will present the results of a split-step finite difference schemes for various volatility models including the Leland model, the Barles and Soner model and the Risk adjusted pricing methodology model.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.