Sturm-Liouville boundary value problems with operator potentials and unitary equivalence

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume1595
dc.contributor.authorMalamud, Mark
dc.contributor.authorNeidhardt, Hagen
dc.date.accessioned2016-03-24T17:38:39Z
dc.date.available2019-06-28T08:05:51Z
dc.date.issued2011
dc.description.abstractConsider the minimal Sturm-Liouville operator A = A_rm min generated by the differential expression A := -fracd^2dt^2 + T in the Hilbert space L^2(R_+,cH) where T = T^*ge 0 in cH. We investigate the absolutely continuous parts of different self-adjoint realizations of cA. In particular, we show that Dirichlet and Neumann realizations, A^D and A^N, are absolutely continuous and unitary equivalent to each other and to the absolutely continuous part of the Krein realization. Moreover, if infsigma_ess(T) = infgs(T) ge 0, then the part wt A^acE_wt A(gs(A^D)) of any self-adjoint realization wt A of cA is unitarily equivalent to A^D. In addition, we prove that the absolutely continuous part wt A^ac of any realization wt A is unitarily equivalent to A^D provided that the resolvent difference (wt Aeng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn0946-8633
dc.identifier.urihttps://doi.org/10.34657/3283
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2349
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherSturm–Liouville operatorseng
dc.subject.otheroperator potentialseng
dc.subject.otherelliptic partial differential operatorseng
dc.subject.otherboundary value problemseng
dc.subject.otherself-adjoint extensionseng
dc.subject.otherunitary equivalenceeng
dc.subject.otherdirect sums of symmetric operatorseng
dc.titleSturm-Liouville boundary value problems with operator potentials and unitary equivalenceeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
679428194.pdf
Size:
385.25 KB
Format:
Adobe Portable Document Format
Description: