Search Results

Now showing 1 - 7 of 7
  • Item
    Temperature-related mortality impacts under and beyond Paris Agreement climate change scenarios
    (Dordrecht [u.a.] : Springer, 2018) Vicedo-Cabrera, Ana Maria; Guo, Yuming; Sera, Francesco; Huber, Veronika; Schleussner, Carl-Friedrich; Mitchell, Dann; Tong, Shilu; de Sousa Zanotti Stagliorio Coelho, Micheline; Saldiva, Paulo Hilario Nascimento; Lavigne, Eric; Matus Correa, Patricia; Valdes Ortega, Nicolas; Kan, Haidong; Osorio, Samuel; Kyselý, Jan; Urban, Aleš; Jaakkola, Jouni J. K.; Ryti, Niilo R. I.; Pascal, Mathilde; Goodman, Patrick G.; Zeka, Ariana; Michelozzi, Paola; Scortichini, Matteo; Hashizume, Masahiro; Honda, Yasushi; Hurtado-Diaz, Magali; Cruz, Julio; Seposo, Xerxes; Kim, Ho; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Daniel Oudin; Ragettli, Martina S.; Röösli, Martin; Guo, Yue Leon; Wu, Chang-fu; Zanobetti, Antonella; Schwartz, Joel; Bell, Michelle L.; Dang, Tran Ngoc; Do Van, Dung; Heaviside, Clare; Vardoulakis, Sotiris; Hajat, Shakoor; Haines, Andy; Armstrong, Ben; Ebi, Kristie L.; Gasparrini, Antonio
    The Paris Agreement binds all nations to undertake ambitious efforts to combat climate change, with the commitment to “hold warming well below 2 Â°C in global mean temperature (GMT), relative to pre-industrial levels, and to pursue efforts to limit warming to 1.5 Â°C”. The 1.5 Â°C limit constitutes an ambitious goal for which greater evidence on its benefits for health would help guide policy and potentially increase the motivation for action. Here we contribute to this gap with an assessment on the potential health benefits, in terms of reductions in temperature-related mortality, derived from the compliance to the agreed temperature targets, compared to more extreme warming scenarios. We performed a multi-region analysis in 451 locations in 23 countries with different climate zones, and evaluated changes in heat and cold-related mortality under scenarios consistent with the Paris Agreement targets (1.5 and 2 Â°C) and more extreme GMT increases (3 and 4 Â°C), and under the assumption of no changes in demographic distribution and vulnerability. Our results suggest that limiting warming below 2 Â°C could prevent large increases in temperature-related mortality in most regions worldwide. The comparison between 1.5 and 2 Â°C is more complex and characterized by higher uncertainty, with geographical differences that indicate potential benefits limited to areas located in warmer climates, where direct climate change impacts will be more discernible.
  • Item
    Reply to Ruhl and Craig: Assessing and governing extreme climate risks needs to be legitimate and democratic
    (Washington, DC : National Acad. of Sciences, 2022) Kemp, Luke; Xu, Chi; Depledge, Joanna; Ebi, Kristie L.; Gibbins, Goodwin; Kohler, Timothy A.; Rockström, Johan; Scheffer, Marten; Schellnhuber, Hans Joachim; Steffen, Will; Lenton, Timothy M.
    [No abstract available]
  • Item
    Reply to Burgess et al: Catastrophic climate risks are neglected, plausible, and safe to study
    (Washington, DC : National Acad. of Sciences, 2022) Kemp, Luke; Xu, Chi; Depledge, Joanna; Ebi, Kristie L.; Gibbins, Goodwin; Kohler, Timothy A.; Rockström, Johan; Scheffer, Marten; Schellnhuber, Hans Joachim; Steffen, Will; Lenton, Timothy M.
  • Item
    Identifying a Safe and Just Corridor for People and the Planet
    (Hoboken, NJ : Wiley-Blackwell, 2021) Rockström, Johan; Gupta, Joyeeta; Lenton, Timothy M.; Qin, Dahe; Lade, Steven J.; Abrams, Jesse F.; Jacobson, Lisa; Rocha, Juan C.; Zimm, Caroline; Bai, Xuemei; Bala, Govindasamy; Bringezu, Stefan; Broadgate, Wendy; Bunn, Stuart E.; DeClerck, Fabrice; Ebi, Kristie L.; Gong, Peng; Gordon, Chris; Kanie, Norichika; Liverman, Diana M.; Nakicenovic, Nebojsa; Obura, David; Ramanathan, Veerabhadran; Verburg, Peter H.; van Vuuren, Detlef P.; Winkelmann, Ricarda
    Keeping the Earth system in a stable and resilient state, to safeguard Earth's life support systems while ensuring that Earth's benefits, risks, and related responsibilities are equitably shared, constitutes the grand challenge for human development in the Anthropocene. Here, we describe a framework that the recently formed Earth Commission will use to define and quantify target ranges for a “safe and just corridor” that meets these goals. Although “safe” and “just” Earth system targets are interrelated, we see safe as primarily referring to a stable Earth system and just targets as being associated with meeting human needs and reducing exposure to risks. To align safe and just dimensions, we propose to address the equity dimensions of each safe target for Earth system regulating systems and processes. The more stringent of the safe or just target ranges then defines the corridor. Identifying levers of social transformation aimed at meeting the safe and just targets and challenges associated with translating the corridor to actors at multiple scales present scope for future work.
  • Item
    Integrated Climate-Change Assessment Scenarios and Carbon Dioxide Removal
    (Amsterdam : Elsevier, 2020) Schweizer, Vanessa J.; Ebi, Kristie L.; van Vuuren, Detlef P.; Jacoby, Henry D.; Riahi, Keywan; Strefler, Jessica; Takahashi, Kiyoshi; van Ruijven, Bas J.; Weyant, John P.
    To halt climate change, we must reduce anthropogenic CO2 emissions to net zero. Any emission sources must be balanced by natural or technological carbon sinks that facilitate CO2 removal (CDR) from the atmosphere. The integrated scenario framework represents how socio-economic trends and social values interact with biophysical systems in exploring future climate change and decarbonization pathways. This primer introduces the integrated scenario framework and its application to explore options for offsetting emissions with CDR. © 2020 The AuthorsTo halt climate change this century, we must reduce carbon dioxide (CO2) emissions from human activities to net zero. Any emission sources, such as in the energy or land-use sectors, must be balanced by natural or technological carbon sinks that facilitate CO2 removal (CDR) from the atmosphere. Projections of demand for large-scale CDR are based on an integrated scenario framework for emission scenarios composed of emission profiles as well as alternative socio-economic development trends and social values consistent with them. The framework, however, was developed years before systematic reviews of CDR entered the literature. This primer provides an overview of the purposes of scenarios in climate-change research and how they are used. It also introduces the integrated scenario framework and why it came about. CDR studies using the scenario framework, as well as its limitations, are discussed. Possible future developments for the scenario framework are highlighted, especially in relation to CDR. © 2020 The Authors
  • Item
    Reply to Bhowmik et al.: Democratic climate action and studying extreme climate risks are not in tension
    (Washington, DC : National Acad. of Sciences, 2022) Kemp, Luke; Xu, Chi; Depledge, Joanna; Ebi, Kristie L.; Gibbins, Goodwin; Kohler, Timothy A.; Rockström, Johan; Scheffer, Marten; Schellnhuber, Hans Joachim; Steffen, Will; Lenton, Timothy M.
    [no abstract available]
  • Item
    Reply to Kelman: The foundations for studying catastrophic climate risks
    (Washington, DC : National Acad. of Sciences, 2022) Kemp, Luke; Xu, Chi; Depledge, Joanna; Ebi, Kristie L.; Gibbins, Goodwin; Kohler, Timothy A.; Rockström, Johan; Scheffer, Marten; Schellnhuber, Hans Joachim; Steffen, Will; Lenton, Timothy M.