Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Assessing the quality of the excess chemical potential flux scheme for degenerate semiconductor device simulation

2020, Abdel, Dilara, Farrell, Patricio, Fuhrmann, Jürgen

The van Roosbroeck system models current flows in (non-)degenerate semiconductor devices. Focusing on the stationary model, we compare the excess chemical potential discretization scheme, a flux approximation which is based on a modification of the drift term in the current densities, with another state-of-the-art Scharfetter-Gummel scheme, namely the diffusion-enhanced scheme. Physically, the diffusion-enhanced scheme can be interpreted as a flux approximation which modifies the thermal voltage. As a reference solution we consider an implicitly defined integral flux, using Blakemore statistics. The integral flux refers to the exact solution of a local two point boundary value problem for the continuous current density and can be interpreted as a generalized Scharfetter-Gummel scheme. All numerical discretization schemes can be used within a Voronoi finite volume method to simulate charge transport in (non-)degenerate semiconductor devices. The investigation includes the analysis of Taylor expansions, a derivation of error estimates and a visualization of errors in local flux approximations to extend previous discussions. Additionally, drift-diffusion simulations of a p-i-n device are performed.

Loading...
Thumbnail Image
Item

Detecting striations via the lateral photovoltage scanning method without screening effect

2020, Kayser, Stefan, Farrell, Patricio, Rotundo, Nella

The lateral photovoltage scanning method (LPS) detects doping inhomogeneities in semiconductors such as Si, Ge and Si(x)Ge(1-x) in a cheap, fast and nondestructive manner. LPS relies on the bulk photovoltaic effect and thus can detect any physical quantity affecting the band profiles of the sample. LPS finite volume simulation using commercial software suffer from long simulation times and convergence instabilities. We present here an open-source finite volume simulation for a 2D Si sample using the ddfermi simulator. For low injection conditions we show that the LPS voltage is proportional to the doping gradient as previous theory suggested under certain conditions. For higher injection conditions we directly show how the LPS voltage and the doping gradient differ and link the physical effect of lower local resolution to the screening effect. Previously, the loss of local resolution was assumed to be only connected to the enlargement of the excess charge carrier distribution.

Loading...
Thumbnail Image
Item

What company does my news article refer to? Tackling multiclass problems with topic modeling

2019, Lübbering, Max, Kunkel, Julian, Farrell, Patricio

While it is technically trivial to search for the company name to predict the company a new article refers to, it often leads to incorrect results. In this article, we compare the two approaches bag-of-words with k-nearest neighbors and Latent Dirichlet Allocation with k-nearest neighbor by assessing their applicability for predicting the S&P 500 company which is mentioned in a business news article or press release. Both approaches are evaluated on a corpus of 13k documents containing 84% news articles and 16% press releases. While the bag-of-words approach yields accurate predictions, it is highly inefficient due to its gigantic feature space. The Latent Dirichlet Allocation approach, on the other hand, manages to achieve roughly the same prediction accuracy (0.58 instead of 0.62) but reduces the feature space by a factor of seven.

Loading...
Thumbnail Image
Item

Modelling charge transport in perovskite solar cells: Potential-based and limiting ion depletion

2020, Abdel, Dilara, Vágner, Petr, Fuhrmann, Jürgen, Farrell, Patricio

From Maxwell--Stefan diffusion and general electrostatics, we derive a drift-diffusion model for charge transport in perovskite solar cells (PSCs) where any ion in the perovskite layer may flexibly be chosen to be mobile or immobile. Unlike other models in the literature, our model is based on quasi Fermi potentials instead of densities. This allows to easily include nonlinear diffusion (based on Fermi--Dirac, Gauss--Fermi or Blakemore statistics for example) as well as limit the ion depletion (via the Fermi--Dirac integral of order-1). The latter will be motivated by a grand-canonical formalism of ideal lattice gas. Furthermore, our model allows to use different statistics for different species. We discuss the thermodynamic equilibrium, electroneutrality as well as generation/recombination. Finally, we present numerical finite volume simulations to underline the importance of limiting ion depletion.

Loading...
Thumbnail Image
Item

Modeling and simulation of the lateral photovoltage scanning method

2020, Farrell, Patricio, Kayser, Stefan, Rotundo, Nella

The fast, cheap and nondestructive lateral photovoltage scanning (LPS) method detects inhomogeneities in semiconductors crystals. The goal of this paper is to model and simulate this technique for a given doping profile. Our model is based on the semiconductor device equations combined with a nonlinear boundary condition, modelling a volt meter. To validate our 2D and 3D finite volume simulations, we use theory developed by Tauc [21] to derive three analytical predictions which our simulation results corroborate, even for anisotropic 2D and 3D meshes. Our code runs about two orders of magnitudes faster than earlier implementations based on commercial software [15]. It also performs well for small doping concentrations which previously could not be simulated at all due to numerical instabilities. Our simulations provide experimentalists with reference laser powers for which meaningful voltages can still be measured. For higher laser power the screening effect does not allow this anymore.