Search Results

Now showing 1 - 10 of 21
  • Item
    Corners and edges always scatter
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Elschner, Johannes; Hu, Guanghui
    Consider time-harmonic acoustic scattering problems governed by the Helmholtz equation in two and three dimensions. We prove that bounded penetrable obstacles with corners or edges scatter every incident wave nontrivially, provided the function of refractive index is real-analytic. Moreover, if such a penetrable obstacle is a convex polyhedron or polygon, then its shape can be uniquely determined by the far-field pattern over all observation directions incited by a single incident wave. Our arguments are elementary and rely on the expansion of solutions to the Helmholtz equation.
  • Item
    Generalized gradient flow structure of internal energy driven phase field systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Bonetti, Elena; Rocca, Elisabetta
    In this paper we introduce a general abstract formulation of a variational thermomechanical model, by means of a unified derivation via a generalization of the principle of virtual powers for all the variables of the system, including the thermal one. In particular, choosing as thermal variable the entropy of the system, and as driving functional the internal energy, we get a gradient flow structure (in a suitable abstract setting) for the whole nonlinear PDE system. We prove a global in time existence of (weak) solutions result for the Cauchy problem associated to the abstract PDE system as well as uniqueness in case of suitable smoothness assumptions on the functionals.
  • Item
    Inverse scattering of electromagnetic waves by multilayered structures : uniqueness in TM mode
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Elschner, Johannes; Hu, Guanghui
    Assume a time-harmonic electromagnetic wave is scattered by an infinitely long cylindrical conductor surrounded by an unknown piecewise homogenous medium remaining invariant along the cylinder axis. We prove that, in TM mode, the far field patterns for all observation directions at a fixed frequency uniquely determine the unknown surrounding medium as well as the shape of the cylindrical conductor. A similar uniqueness result is obtained for the scattering by multilayered penetrable periodic structures in a piecewise homogenous medium. The periodic interfaces and refractive indices can be uniquely identified from the near field data measured only above (or below) the structure for all quasi-periodic incident waves with a fixed phase-shift. The proofs are based on the singularity of the Green function to a two dimensional elliptic equation with piecewise constant leading coefficients
  • Item
    Some inverse problems arising from elastic scattering by rigid obstacles
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Hu, Guanghui; Kirsch, Andreas; Sini, Mourad
    In the first part, it is proved that a C2-regular rigid scatterer in R3 can be uniquely identified by the shear part (i.e. S-part) of the far-field pattern corresponding to all incident shear waves at any fixed frequency. The proof is short and it is based on a kind of decoupling of the S-part of scattered wave from its pressure part (i.e. P-part) on the boundary of the scatterer. Moreover, uniqueness using the S-part of the far-field pattern corresponding to only one incident plane shear wave holds for a ball or a convex Lipschitz polyhedron. In the second part, we adapt the factorization method to recover the shape of a rigid body from the scattered S-waves (resp. P-waves) corresponding to all incident plane shear (resp. pressure) waves. Numerical examples illustrate the accuracy of our reconstruction in R2. In particular, the factorization method also leads to some uniqueness results for all frequencies excluding possibly a discrete set.
  • Item
    Global uniqueness in determining polygonal periodic structures with a minimal number of incident plane waves
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Elschner, Johannes; Hu, Guanghui
    In this paper, we investigate the inverse problem of recovering a two-dimensional perfectly reflecting diffraction grating from the scattered waves measured above the structure. Inspired by a novel idea developed by Bao, Zhang and Zou [to appear in Trans. Amer. Math. Soc.], we present a complete characterization of the global uniqueness in determining polygonal periodic structures using a minimal number of incident plane waves. The idea in this paper combines the reflection principle for the Helmholtz equation and the dihedral group theory. We characterize all periodic polygonal structures that cannot be identified by one incident plane wave, including the resonance case where a Rayleigh frequency is allowed. Furthermore, we show that those unidentifiable gratings provide non-uniqueness examples for appropriately chosen wave number and incident angles. We also indicate and fix a gap in the proof of the main theorem of Elschner and Yamamoto [Z. Anal. Anwend., 26 (2007), 165-177], and generalize the uniqueness results of that paper.
  • Item
    Ground states and concentration phenomena for the fractional Schrödinger equation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Fall, Mouhamed Moustapha; Mahmoudi, Fethi; Valdinoci, Enrico
    We consider here solutions of the nonlinear fractional Schrödinger equation. We show that concentration points must be critical points for the potential. We also prove that, if the potential is coercive and has a unique global minimum, then ground states concentrate suitably at such minimal point. In addition, if the potential is radial, then the minimizer is unique.
  • Item
    A new type of identification problems: Optimizing the fractional order in a nonlocal evolution equation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Sprekels, Jürgen; Valdinoci, Enrico
    In this paper, we consider a rather general linear evolution equation of fractional type, namely a diffusion type problem in which the diffusion operator is the sth power of a positive definite operator having a discrete spectrum in R+. We prove existence, uniqueness and differentiability properties with respect to the fractional parameter s. These results are then employed to derive existence as well as first-order necessary and second-order sufficient optimality conditions for a minimization problem, which is inspired by considerations in mathematical biology. In this problem, the fractional parameter s serves as the control parameter that needs to be chosen in such a way as to minimize a given cost functional. This problem constitutes a new class of identification problems: while usually in identification problems the type of the differential operator is prescribed and one or several of its coefficient functions need to be identified, in the present case one has to determine the type of the differential operator itself. This problem exhibits the inherent analytical difficulty that with changing fractional parameter s also the domain of definition, and thus the underlying function space, of the fractional operator changes.
  • Item
    Maximal dissipative solutions for incompressible fluid dynamics
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Lasarzik, Robert
    We introduce the new concept of maximal dissipative solutions for the Navier--Stokes and Euler equations and show that these solutions exist and the solution set is closed and convex. The concept of maximal dissipative solutions coincides with the concept of weak solutions as long as the weak solutions inherits enough regularity to be unique. A maximal dissipative solution is defined as the minimizer of a convex functional and we argue that this definition bears several advantages.
  • Item
    On a higher order convective Cahn-Hilliard type equation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Korzec, Maciek Dominik; Rybka, Piotr
    A convective Cahn-Hilliard type equation of sixth order that describes the faceting of a growing surface is considered with periodic boundary conditions. By using a Galerkin approach the existence of weak solutions to this sixth order partial differential equation is established in $L^2(0,T; dot H^3_per)$. Furthermore stronger regularity results have been derived and these are used to prove uniqueness of the solutions. Additionally a numerical study shows that solutions behave similarly as for the better known convective Cahn-Hilliard equation. The transition from coarsening to roughening is analyzed, indicating that the characteristic length scale decreases logarithmically with increasing deposition rate
  • Item
    Direct and inverse elastic scattering problems for diffraction gratings
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Elschner, Johannes; Hu, Guanghui
    This paper is concerned with the direct and inverse scattering of time-harmonic plane elastic waves by unbounded periodic structures (diffraction gratings). We present a variational approach to the forward scattering problems with Lipschitz grating profiles and give a survey of recent uniqueness and existence results. We also report on recent global uniqueness results within the class of piecewise linear grating profiles for the corresponding inverse elastic scattering problems. Moreover, a discrete Galerkin method is presented to efficiently approximate solutions of direct scattering problems via an integral equation approach. Finally, an optimization method for solving the inverse problem of recovering a 2D periodic structure from scattered elastic waves measured above the structure is discussed.