Search Results

Now showing 1 - 10 of 32
  • Item
    On the existence of weak solutions in the context of multidimensional incompressible fluid dynamics
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Lasarzik, Robert
    We define the concept of energy-variational solutions for the Navier--Stokes and Euler equations. This concept is shown to be equivalent to weak solutions with energy conservation. Via a standard Galerkin discretization, we prove the existence of energy-variational solutions and thus weak solutions in any space dimension for the Navier--Stokes equations. In the limit of vanishing viscosity the same assertions are deduced for the incompressible Euler system. Via the selection criterion of maximal dissipation we deduce well-posedness for these equations.
  • Item
    Stationary solutions to an energy model for semiconductor devices where the equations are defined on different domains
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Glitzky, Annegret; Hünlich, Rolf
    We discuss a stationary energy model from semiconductor modelling. We accept the more realistic assumption that the continuity equations for electrons and holes have to be considered only in a subdomain $Omega_0$ of the domain of definition $Omega$ of the energy balance equation and of the Poisson equation. Here $Omega_0$ corresponds to the region of semiconducting material, $OmegasetminusOmega_0$ represents passive layers. Metals serving as contacts are modelled by Dirichlet boundary conditions. We prove a local existence and uniqueness result for the two-dimensional stationary energy model. For this purpose we derive a $W^1,p$-regularity result for solutions of systems of elliptic equations with different regions of definition and use the Implicit Function Theorem.
  • Item
    Maximal dissipative solutions for incompressible fluid dynamics
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Lasarzik, Robert
    We introduce the new concept of maximal dissipative solutions for the Navier--Stokes and Euler equations and show that these solutions exist and the solution set is closed and convex. The concept of maximal dissipative solutions coincides with the concept of weak solutions as long as the weak solutions inherits enough regularity to be unique. A maximal dissipative solution is defined as the minimizer of a convex functional and we argue that this definition bears several advantages.
  • Item
    On a higher order convective Cahn-Hilliard type equation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Korzec, Maciek Dominik; Rybka, Piotr
    A convective Cahn-Hilliard type equation of sixth order that describes the faceting of a growing surface is considered with periodic boundary conditions. By using a Galerkin approach the existence of weak solutions to this sixth order partial differential equation is established in $L^2(0,T; dot H^3_per)$. Furthermore stronger regularity results have been derived and these are used to prove uniqueness of the solutions. Additionally a numerical study shows that solutions behave similarly as for the better known convective Cahn-Hilliard equation. The transition from coarsening to roughening is analyzed, indicating that the characteristic length scale decreases logarithmically with increasing deposition rate
  • Item
    Direct and inverse elastic scattering problems for diffraction gratings
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Elschner, Johannes; Hu, Guanghui
    This paper is concerned with the direct and inverse scattering of time-harmonic plane elastic waves by unbounded periodic structures (diffraction gratings). We present a variational approach to the forward scattering problems with Lipschitz grating profiles and give a survey of recent uniqueness and existence results. We also report on recent global uniqueness results within the class of piecewise linear grating profiles for the corresponding inverse elastic scattering problems. Moreover, a discrete Galerkin method is presented to efficiently approximate solutions of direct scattering problems via an integral equation approach. Finally, an optimization method for solving the inverse problem of recovering a 2D periodic structure from scattered elastic waves measured above the structure is discussed.
  • Item
    Inverse scattering of elastic waves by periodic structures : uniqueness under the third or fourth kind boundary conditions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Elschner, Johannes; Hu, Guanghui
    The inverse scattering of a time-harmonic elastic wave by a two-dimensional periodic structure in R 2 is investigated. The grating profile is assumed to be a graph given by a piecewise linear function on which the third or fourth kind boundary conditions are satisfied. Via an equivalent variational formulation, existence of quasi-periodic solutions for general Lipschitz grating profiles is proved by applying the Fredholm alternative. However, uniqueness of solution to the direct problem does not hold in general. For the inverse problem, we determine and classify all the unidentifiable grating profiles corresponding to a given incident elastic field, relying on the reflection principle for the Navier equation and the rotational invariance of propagating directions of the total field. Moreover, global uniqueness for the inverse problem is established with a minimal number of incident pressure or shear waves, including the resonance case where a Rayleigh frequency is allowed. The gratings that are unidentifiable by one incident elastic wave provide non-uniqueness examples for appropriately chosen wave number and incident angles
  • Item
    On nonlocal Cahn-Hilliard-Navier-Stokes systems in two dimensions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Frigeri, Sergio; Gal, Cipian G.; Grasselli, Maurizio
    We consider a diffuse interface model which describes the motion of an incompressible isothermal mixture of two immiscible fluids. This model consists of the Navier-Stokes equations coupled with a convective nonlocal Cahn-Hilliard equation. Several results were already proven by two of the present authors. However, in the two-dimensional case, the uniqueness of weak solutions was still open. Here we establish such a result even in the case of degenerate mobility and singular potential. Moreover, we show the strong-weak uniqueness in the case of viscosity depending on the order parameter, provided that the mobility is constant and the potential is regular. In the case of constant viscosity, on account of the uniqueness results we can deduce the connectedness of the global attractor whose existence was obtained in a previous paper. The uniqueness technique can be adapted to show the validity of a smoothing property for the difference of two trajectories which is crucial to establish the existence of an exponential attractor.
  • Item
    An inverse electromagnetic scattering problem for a bi-periodic inhomogeneous layer on a perfectly conducting plate
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Hu, Guanghui; Yang, Jiaqing; Zhang, Bo
    This paper is concerned with uniqueness for reconstructing a periodic inhomogeneous medium covered on a perfectly conducting plate. We deal with the problem in the frame of time-harmonic Maxwell systems without TE or TM polarization. An orthogonal relation for two refractive indices is obtained, and then inspired by Kirsch's idea, the refractive index can be identified by utilizing the eigenvalues and eigenfunctions of a quasi-periodic Sturm-Liouville eigenvalue problem.
  • Item
    The factorization method for inverse elastic scattering from periodic structures
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Hu, Guanghui; Lu, Yulong; Zhang, Bo
    This paper is concerned with the inverse scattering of time-harmonic elastic waves from rigid periodic structures. We establish the factorization method to identify an unknown grating surface from knowledge of the scattered compressional or shear waves measured on a line above the scattering surface. Near-field operators are factorized by selecting appropriate incident waves derived from quasi-periodic half-space Green’s tensor to the Navier equation. The factorization method gives rise to a uniqueness result for the inverse scattering problem by utilizing only the compressional or shear components of the scattered field corresponding to all quasi-periodic incident plane waves with a common phase-shift. A number of computational examples are provided to show the accuracy of the inversion algorithms, with an emphasis placed on comparing reconstructions from the scattered near-field and those from its compressional and shear components.
  • Item
    Uniqueness in inverse elastic scattering with finitely many incident waves
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Elschner, Johannes; Yamamoto, Masahiro
    We consider the third and fourth exterior boundary value problems of linear isotropic elasticity and present uniqueness results for the corresponding inverse scattering problems with polyhedral-type obstacles and a finite number of incident plane elastic waves. Our approach is based on a reflection principle for the Navier equation.