Search Results

Now showing 1 - 10 of 25
  • Item
    High temperature behavior of rual thin films on piezoelectric CTGS and LGS substrates
    (Basel : MDPI AG, 2020) Seifert, M.
    This paper reports on a significant further improvement of the high temperature stability of RuAl thin films (110 nm) on the piezoelectric Ca3TaGa3Si2O14 (CTGS) and La3Ga5SiO14 (LGS) substrates. RuAl thin films with AlN or SiO2 cover layers and barriers to the substrate (each 20 nm), as well as a combination of both were prepared on thermally oxidized Si substrates, which serve as a reference for fundamental studies, and the piezoelectric CTGS, as well as LGS substrates. In somefilms, additional Al layers were added. To study their high temperature stability, the samples were annealed in air and in high vacuum up to 900 °C, and subsequently their cross-sections, phase formation, film chemistry, and electrical resistivity were analyzed. It was shown that on thermally oxidized Si substrates, all films were stable after annealing in air up to 800 °C and in high vacuum up to 900 °C. The high temperature stability of RuAl thin films on CTGS substrates was improved up to 900 °C in high vacuum by the application of a combined AlN/SiO2 barrier layer and up to 800 °C in air using a SiO2 barrier. On LGS, the films were only stable up to 600 °C in air; however, a single SiO2 barrier layer was sufficient to prevent oxidation during annealing at 900 °C in high vacuum.
  • Item
    Peculiarities of electronic structure and composition in ultrasound milled silicon nanowires
    (Amsterdam [u.a.] : Elsevier, 2020) Parinova, E.V.; Pisliaruk, A.K.; Schleusener, A.; Koyuda, D.A.; Chumakov, R.G.; Lebedev, A.M.; Ovsyannikov, R.; Makarova, A.; Smirnov, D.; Sivakov, V.; Turishchev, S.Yu.
    The combined X-ray absorption and emission spectroscopy approach was applied for the detailed electronic structure and composition studies of silicon nanoparticles produced by the ultrasound milling of heavily and lowly doped Si nanowires formed by metal-assisted wet chemical etching. The ultrasoft X-ray emission spectroscopy and synchrotron based X-ray absorption near edges structure spectroscopy techniques were utilize to study the valence and conduction bands electronic structure together with developed surface phase composition qualitative analysis. Our achieved results based on the implemented surface sensitive techniques strongly suggest that nanoparticles under studies show a significant presence of the silicon suboxides depending on the pre-nature of initial Si wafers. The controlled variation of the Si nanoparticles surface composition and electronic structure, including band gap engineering, can open a new prospective for a wide range Si-based nanostructures application including the integration of such structures with organic or biological systems. © 2020
  • Item
    A graphene-based hot electron transistor
    (Washington, DC : American Chemical Society, 2013) Vaziri, S.; Lupina, G.; Henkel, C.; Smith, A.D.; Östling, M.; Dabrowski, J.; Lippert, G.; Mehr, W.; Lemme, M.C.
    We experimentally demonstrate DC functionality of graphene-based hot electron transistors, which we call graphene base transistors (GBT). The fabrication scheme is potentially compatible with silicon technology and can be carried out at the wafer scale with standard silicon technology. The state of the GBTs can be switched by a potential applied to the transistor base, which is made of graphene. Transfer characteristics of the GBTs show ON/OFF current ratios exceeding 104.
  • Item
    Scalable, high power line focus diode laser for crystallizing of silicon thin films
    (Amsterdam : Elsevier, 2010) Lichtenstein, N.; Baettig, R.; Brunner, R.; Müller, J.; Valk, B.; Gawlik, A.; Bergmann, J.; Falk, F.
    We present the design and performance of a diode laser module producing a high intensity line focus at 808 nm for material processing. The design is based on a linear array of 7 laser bars and beam forming optics featuring a micro-optic homogenizer. The module delivers a total output power of 900 W at 140 A and peak intensity created in the focus area of 10.3 kW/cm2. Two systems with line length of 5 cm and 10 cm at a large working distance of 110 mm have been realized. The chosen concept allows scaling in length by joining multiple modules which is of interest for material processing in industrial applications. Application results from laser crystallization of amorphous silicon seed layers used in the fabrication of photovoltaic cells for solar panels are given.
  • Item
    Valence effect on the thermopower of Eu systems
    (College Park, MD : American Physical Society, 2020) Stockert, U.; Seiro, S.; Seiro, S.; Caroca-Canales, N.; Hassinger, E.; Hassinger, E.; Geibel, C.
    We investigated the thermoelectric transport properties of EuNi2P2 and EuIr2Si2 to evaluate the relevance of Kondo interaction and valence fluctuations in these materials. While the thermal conductivities behave conventionally, the thermopower curves exhibit large values with pronounced maxima as typically observed in Ce- and Yb-based heavy-fermion materials. However, neither the positions of these maxima nor the absolute thermopower values at low temperature are in line with the heavy-fermion scenario and the moderately enhanced effective charge carrier masses. Instead, we may relate the thermopower in our materials to the temperature-dependent Eu valence by taking into account changes in the chemical potential. Our analysis confirms that valence fluctuations play an important role in EuNi2P2 and EuIr2Si2.
  • Item
    X-ray nanodiffraction on a single SiGe quantum dot inside a functioning field-effect transistor
    (Washington, DC : American Chemical Society, 2011) Hrauda, N.; Zhang, J.; Wintersberger, E.; Etzelstorfer, T.; Mandl, B.; Stangl, J.; Carbone, D.; Holý, V.; Jovanović, V.; Biasotto, C.; Nanver, L.K.; Moers, J.; Grützmacher, D.; Bauer, G.
    For advanced electronic, optoelectronic, or mechanical nanoscale devices a detailed understanding of their structural properties and in particular the strain state within their active region is of utmost importance. We demonstrate that X-ray nanodiffraction represents an excellent tool to investigate the internal structure of such devices in a nondestructive way by using a focused synchotron X-ray beam with a diameter of 400 nm. We show results on the strain fields in and around a single SiGe island, which serves as stressor for the Si-channel in a fully functioning Si-metal-oxide semiconductor field-effect transistor.
  • Item
    Quantitative protein sensing with germanium THz-antennas manufactured using CMOS processes
    (Washington, DC : Soc., 2022) Hardt, Elena; Chavarin, Carlos Alvarado; Gruessing, Soenke; Flesch, Julia; Skibitzki, Oliver; Spirito, Davide; Vita, Gian Marco; Simone, Giovanna De; Masi, Alessandra di; You, Changjiang; Witzigmann, Bernd; Piehler, Jacob; Capellini, Giovanni
    The development of a CMOS manufactured THz sensing platform could enable the integration of state-of-the-art sensing principles with the mixed signal electronics ecosystem in small footprint, low-cost devices. To this aim, in this work we demonstrate a label-free protein sensing platform using highly doped germanium plasmonic antennas realized on Si and SOI substrates and operating in the THz range of the electromagnetic spectrum. The antenna response to different concentrations of BSA shows in both cases a linear response with saturation above 20 mg/mL. Ge antennas on SOI substrates feature a two-fold sensitivity as compared to conventional Si substrates, reaching a value of 6 GHz/(mg/mL), which is four-fold what reported using metal-based metamaterials. We believe that this result could pave the way to a low-cost lab-on-a-chip biosensing platform.
  • Item
    High-temperature electromechanical loss in piezoelectric langasite and catangasite crystals
    (Melville, NY : American Inst. of Physics, 2021) Suhak, Yuriy; Fritze, Holger; Sotnikov, Andrei; Schmidt, Hagen; Johnson, Ward L.
    Temperature-dependent acoustic loss Q−1 is studied in partially disordered langasite (LGS, La3Ga5SiO14) and ordered catangasite (CTGS, Ca3TaGa3Si2O14) crystals and compared with previously reported CTGS and langatate (LGT, La3Ga5.5Ta0.5O14) data. Two independent techniques, a contactless tone-burst excitation technique and contacting resonant piezoelectric spectroscopy, are used in this study. Contributions to the measured Q−1(T) are determined through fitting to physics-based functions, and the extracted fit parameters, including the activation energies of the processes, are discussed. It is shown that losses in LGS and CTGS are caused by a superposition of several mechanisms, including intrinsic phonon–phonon loss, point-defect relaxations, and conductivity-related relaxations.
  • Item
    Phenomenology of iron-assisted ion beam pattern formation on Si(001)
    (Bristol : IOP, 2011) MacKo, S.; Frost, F.; Engler, M.; Hirsch, D.; Höche, T.; Grenzer, J.; Michely, T.
    Pattern formation on Si(001) through 2 keV Kr+ ion beam erosion of Si(001) at an incident angle of # = 30° and in the presence of sputter codeposition or co-evaporation of Fe is investigated by using in situ scanning tunneling microscopy, ex situ atomic force microscopy and electron microscopy. The phenomenology of pattern formation is presented, and experiments are conducted to rule out or determine the processes of relevance in ion beam pattern formation on Si(001) with impurities. Special attention is given to the determination of morphological phase boundaries and their origin. Height fluctuations, local flux variations, induced chemical inhomogeneities, silicide formation and ensuing composition-dependent sputtering are found to be of relevance for pattern formation.
  • Item
    Thermally induced evolution of the structure and optical properties of silicon nanowires
    (Amsterdam [u.a.] : Elsevier, 2020) Mussabek, Gauhar; Lysenko, Vladimir; Yermukhamed, Dana; Sivakov, Vladimir; Yu. Timoshenko, Victor
    In the present paper, we report on the investigation of thermal annealing (TA) effect on structural and optical properties of crystalline silicon nanowires produced by metal-assisted chemical etching approach. In particular, the impact of TA on nanowire length, relative volume and size distribution of voids is described in terms of Lifshitz-Slyozov-Wagner theory considering the TA induced Oswald ripening in the SiNW arrays. It was also found that TA leads to a decrease of the SiNWs total reflection in the wide UV–VIS-IR spectral range. The reported effects can be used for tuning of crystalline SiNWs arrays in view of their further applications in photonics related fields. © 2020 The Authors