Search Results

Now showing 1 - 10 of 10
  • Item
    Tuneable Dielectric Properties Derived from Nitrogen-Doped Carbon Nanotubes in PVDF-Based Nanocomposites
    (Washington, DC : ACS Publications, 2018) Pawar, Shital Patangrao; Arjmand, Mohammad; Pötschke, Petra; Krause, Beate; Fischer, Dieter; Bose, Suryasarathi; Sundararaj, Uttandaraman
    Nitrogen-doped multiwall carbon nanotubes (N-MWNTs) with different structures were synthesized by employing chemical vapor deposition and changing the argon/ethane/nitrogen gas precursor ratio and synthesis time, and broadband dielectric properties of their poly(vinylidene fluoride) (PVDF)-based nanocomposites were investigated. The structure, morphology, and electrical conductivity of synthesized N-MWNTs were assessed via Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy, and powder conductivity techniques. The melt compounded PVDF nanocomposites manifested significantly high real part of the permittivity (ϵ′) along with low dissipation factor (tan δϵ) in 0.1 kHz to 1 MHz frequency range, suggesting use as efficient charge-storage materials. Longer synthesis time resulted in enhanced carbon purity as well as higher thermal stability, determined via TGA analysis. The inherent electrical conductivity of N-MWNTs scaled with the carbon purity. The charge-storage ability of the developed PVDF nanocomposites was commensurate with the amount of the nitrogen heteroatom (i.e., self-polarization), carbon purity, and inherent electrical conductivity of N-MWNTs and increased with better dispersion of N-MWNTs in PVDF.
  • Item
    Change in the embedding dimension as an indicator of an approaching transition
    (San Francisco, CA : Public Library of Science (PLoS), 2014) Neuman, Y.; Marwan, N.; Cohen, Y.
    Predicting a transition point in behavioral data should take into account the complexity of the signal being influenced by contextual factors. In this paper, we propose to analyze changes in the embedding dimension as contextual information indicating a proceeding transitive point, called OPtimal Embedding tRANsition Detection (OPERAND). Three texts were processed and translated to time-series of emotional polarity. It was found that changes in the embedding dimension proceeded transition points in the data. These preliminary results encourage further research into changes in the embedding dimension as generic markers of an approaching transition point.
  • Item
    Restoration of rhythmicity in diffusively coupled dynamical networks
    (London : Nature Publishing Group, 2015) Zou, W.; Senthilkumar, D.V.; Nagao, R.; Kiss, I.Z.; Tang, Y.; Koseska, A.; Duan, J.; Kurths, J.
  • Item
    Changes in Selected Organic and Inorganic Compounds in the Hydrothermal Carbonization Process Liquid While in Storage
    (Washington, DC : ACS Publications, 2023) Marzban, Nader; Libra, Judy A.; Rotter, Vera Susanne; Ro, Kyoung S.; Moloeznik Paniagua, Daniela; Filonenko, Svitlana
    Although many studies have investigated the hydrothermal transformation of feedstock biomass, little is known about the stability of the compounds present in the process liquid after the carbonization process is completed. The physicochemical characteristics of hydrothermal carbonization (HTC) liquid products may change over storage time, diminishing the amount of desired products or producing unwanted contaminants. These changes may restrict the use of HTC liquid products. Here, we investigate the effect of storage temperature (20, 4, and −18 °C) and time (weeks 1-12) on structural and compositional changes of selected organic compounds and physicochemical characteristics of the process liquid from the HTC of digested cow manure. ANOVA showed that the storage time has a significant effect on the concentrations of almost all of the selected organic compounds, except acetic acid. Considerable changes in the composition of the process liquid took place at all studied temperatures, including deep freezing at −18 °C. Prominent is the polymerization of aromatic compounds with the formation of precipitates, which settle over time. This, in turn, influences the inorganic compounds present in the liquid phase by chelating or selectively adsorbing them. The implications of these results on the further processing of the process liquid for various applications are discussed.
  • Item
    Linear and ring polymers in confined geometries
    (Berlin ; Heidelberg : Springer, 2017) Usatenko, Zoryana; Kuterba, Piotr; Chamati, Hassan; Romeis, Dirk
    A short overview of the theoretical and experimental works on the polymer-colloid mixtures is given. The behaviour of a dilute solution of linear and ring polymers in confined geometries like slit of two parallel walls or in the solution of mesoscopic colloidal particles of big size with different adsorbing or repelling properties in respect to polymers is discussed. Besides, we consider the massive field theory approach in fixed space dimensions d = 3 for the investigation of the interaction between long flexible polymers and mesoscopic colloidal particles of big size and for the calculation of the correspondent depletion interaction potentials and the depletion forces between confining walls. The presented results indicate the interesting and nontrivial behavior of linear and ring polymers in confined geometries and give possibility better to understand the complexity of physical effects arising from confinement and chain topology which plays a significant role in the shaping of individual chromosomes and in the process of their segregation, especially in the case of elongated bacterial cells. The possibility of using linear and ring polymers for production of new types of nano- and micro-electromechanical devices is analyzed.
  • Item
    Energetic electron assisted synthesis of highly tunable temperature-responsive collagen/elastin gels for cyclic actuation: macroscopic switching and molecular origins
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Wilharm, Nils; Fischer, Tony; Ott, Florian; Konieczny, Robert; Zink, Mareike; Beck-Sickinger, Annette G.; Mayr, Stefan G.
    Thermoresponsive bio-only gels that yield sufficiently large strokes reversibly and without large hysteresis at a well-defined temperature in the physiological range, promise to be of value in biomedical application. Within the present work we demonstrate that electron beam modification of a blend of natural collagen and elastin gels is a route to achieve this goal, viz. to synthesize a bioresorbable gel with largely reversible volume contractions as large as 90% upon traversing a transition temperature that can be preadjusted between 36 °C and 43 °C by the applied electron dose. Employing circular dichroism and temperature depending confocal laser scanning microscopy measurements, we furthermore unravel the mechanisms underlying this macroscopic behavior on a molecular and network level, respectively and suggest a stringent picture to account for the experimental observations. © 2019, The Author(s).
  • Item
    On the longtime behavior of a viscous Cahn-Hilliard system with convection and dynamic boundary conditions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    In this paper, we study the longtime asymptotic behavior of a phase separation process occurring in a three-dimensional domain containing a fluid flow of given velocity. This process is modeled by a viscous convective CahnHilliard system, which consists of two nonlinearly coupled second-order partial differential equations for the unknown quantities, the chemical potential and an order parameter representing the scaled density of one of the phases. In contrast to other contributions, in which zero Neumann boundary conditions were are assumed for both the chemical potential and the order parameter, we consider the case of dynamic boundary conditions, which model the situation when another phase transition takes place on the boundary. The phase transition processes in the bulk and on the boundary are driven by free energies functionals that may be nondifferentiable and have derivatives only in the sense of (possibly set-valued) subdifferentials. For the resulting initial-boundary value system of CahnHilliard type, general well-posedness results have been established in a recent contribution by the same authors. In the present paper, we investigate the asymptotic behavior of the solutions as times approaches infinity. More precisely, we study the w-limit (in a suitable topology) of every solution trajectory. Under the assumptions that the viscosity coefficients are strictly positive and that at least one of the underlying free energies is differentiable, we prove that the w-limit is meaningful and that all of its elements are solutions to the corresponding stationary system, where the component representing the chemical potential is a constant.
  • Item
    Experimental investigation on preconditioned rate induced tipping in a thermoacoustic system
    (London : Nature Publishing Group, 2017) Tony, J.; Subarna, S.; Syamkumar, K.S.; Sudha, G.; Akshay, S.; Gopalakrishnan, E.A.; Surovyatkina, E.; Sujith, R.I.
    Many systems found in nature are susceptible to tipping, where they can shift from one stable dynamical state to another. This shift in dynamics can be unfavorable in systems found in various fields ranging from ecology to finance. Hence, it is important to identify the factors that can lead to tipping in a physical system. Tipping can mainly be brought about by a change in parameter or due to the influence of external fluctuations. Further, the rate at which the parameter is varied also determines the final state that the system attains. Here, we show preconditioned rate induced tipping in experiments and in a theoretical model of a thermoacoustic system. We provide a specific initial condition (preconditioning) and vary the parameter at a rate higher than a critical rate to observe tipping. We find that the critical rate is a function of the initial condition. Our study is highly relevant because the parameters that dictate the asymptotic behavior of many physical systems are temporally dynamic.
  • Item
    Plastic Deformation Modes of CuZr/Cu Multilayers
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Cui, Yan; Abad, Oscar Torrents; Wang, Fei; Huang, Ping; Lu, Tian-Jian; Xu, Ke-Wei; Wang, Jian
    We synthesized CuZr/Cu multilayers and performed nanoindentation testing to explore the dependence of plastic deformation modes on the thickness of CuZr layers. The Cu layers were 18 nm thick and the CuZr layers varied in thickness from 4 nm to 100 nm. We observed continuous plastic co-deformation in the 4 nm and 10 nm CuZr − 18 nm Cu multilayers and plastic-induced shear instability in thick CuZr layers (>20 nm). The plastic co-deformation is ascribed to the nucleation and interaction of shear transformation zones in CuZr layers at the adjacent interfaces, while the shear instability is associated with the nucleation and propagation of shear bands in CuZr layers. Shear bands are initialized in the CuZr layers due to the accumulated glide dislocations along CuZr-Cu interfaces and propagate into adjacent Cu layers via slips on {111} plane non-parallel to the interface. Due to crystallographic constraint of the Cu layers, shear bands are approximately parallel to {111} plane in the Cu layer.
  • Item
    2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes
    (London : Nature Publishing Group, 2016) Chiatti, Olivio; Riha, Christian; Lawrenz, Dominic; Busch, Marco; Dusari, Srujana; Sánchez-Barriga, Jaime; Mogilatenko, Anna; Yashina, Lada V.; Valencia, Sergio; Ünal, Akin A.; Rader, Oliver; Fischer, Saskia F.
    Low-field magnetotransport measurements of topological insulators such as Bi2Se3 are important for revealing the nature of topological surface states by quantum corrections to the conductivity, such as weak-antilocalization. Recently, a rich variety of high-field magnetotransport properties in the regime of high electron densities (∼1019 cm−3) were reported, which can be related to additional two-dimensional layered conductivity, hampering the identification of the topological surface states. Here, we report that quantum corrections to the electronic conduction are dominated by the surface states for a semiconducting case, which can be analyzed by the Hikami-Larkin-Nagaoka model for two coupled surfaces in the case of strong spin-orbit interaction. However, in the metallic-like case this analysis fails and additional two-dimensional contributions need to be accounted for. Shubnikov-de Haas oscillations and quantized Hall resistance prove as strong indications for the two-dimensional layered metallic behavior. Temperature-dependent magnetotransport properties of high-quality Bi2Se3 single crystalline exfoliated macro and micro flakes are combined with high resolution transmission electron microscopy and energy-dispersive x-ray spectroscopy, confirming the structure and stoichiometry. Angle-resolved photoemission spectroscopy proves a single-Dirac-cone surface state and a well-defined bulk band gap in topological insulating state. Spatially resolved core-level photoelectron microscopy demonstrates the surface stability.