Search Results

Now showing 1 - 7 of 7
Loading...
Thumbnail Image
Item

Time-Warping Invariants of Multidimensional Time Series

2020, Diehl, Joscha, Ebrahimi-Fard, Kurusch, Tapia, Nikolas

In data science, one is often confronted with a time series representing measurements of some quantity of interest. Usually, in a first step, features of the time series need to be extracted. These are numerical quantities that aim to succinctly describe the data and to dampen the influence of noise. In some applications, these features are also required to satisfy some invariance properties. In this paper, we concentrate on time-warping invariants. We show that these correspond to a certain family of iterated sums of the increments of the time series, known as quasisymmetric functions in the mathematics literature. We present these invariant features in an algebraic framework, and we develop some of their basic properties. © 2020, The Author(s).

Loading...
Thumbnail Image
Item

Tropical time series, iterated-sum signatures and quasisymmetric functions

2020, Diehl, Joscha, Ebrahimi-Fard, Kurusch, Tapia, Nikolas

Driven by the need for principled extraction of features from time series, we introduce the iterated-sums signature over any commutative semiring. The case of the tropical semiring is a central, and our motivating, example, as it leads to features of (real-valued) time series that are not easily available using existing signature-type objects.

Loading...
Thumbnail Image
Item

Iterated-sums signature, quasi-symmetric functions and time series analysis

2020, Diehl, Joscha, Ebrahimi-Fard, Kurusch, Tapia, Nikolas

We survey and extend results on a recently defined character on the quasi-shuffle algebra. This character, termed iterated-sums signature, appears in the context of time series analysis and originates from a problem in dynamic time warping. Algebraically, it relates to (multidimensional) quasisymmetric functions as well as (deformed) quasi-shuffle algebras.

Loading...
Thumbnail Image
Item

Generalized iterated-sums signatures

2020, Diehl, Joscha, Ebrahimi-Fard, Kurusch, Tapia, Nikolas

We explore the algebraic properties of a generalized version of the iterated-sums signature, inspired by previous work of F. Király and H. Oberhauser. In particular, we show how to recover the character property of the associated linear map over the tensor algebra by considering a deformed quasi-shuffle product of words on the latter. We introduce three non-linear transformations on iterated-sums signatures, close in spirit to Machine Learning applications, and show some of their properties.

Loading...
Thumbnail Image
Item

The moving frame method for iterated-integrals: Orthogonal invariants

2020, Diehl, Joscha, Preiß, Rosa, Ruddy, Michael, Tapia, Nikolas

We explore the algebraic properties of a generalized version of the iterated-sums signature, inspired by previous work of F. Kiraly and H. Oberhauser. In particular, we show how to recover the character property of the associated linear map over the tensor algebra by considering a deformed quasi-shuffle product of words on the latter. We introduce three non-linear transformations on iterated-sums signatures, close in spirit to Machine Learning applications, and show some of their properties.

Loading...
Thumbnail Image
Item

Pathwise stability of likelihood estimators for diffusions via rough paths

2013, Diehl, Joscha, Friz, Peter K., Mai, Hilmar

We consider the estimation problem of an unknown drift parameter within classes of non-degenerate diffusion processes. The Maximum Likelihood Estimator (MLE) is analyzed with regard to its pathwise stability properties and robustness towards misspecification in volatility and even the very nature of noise. We construct a version of the estimator based on rough integrals (in the sense of T. Lyons) and present strong evidence that this construction resolves a number of stability issues inherent to the standard MLEs.

Loading...
Thumbnail Image
Item

Time-warping invariants of multidimensional time series

2019, Diehl, Joscha, Kurusch, Ebrahimi-Fard, Tapia, Nikolas

In data science, one is often confronted with a time series representing measurements of some quantity of interest. Usually, in a first step, features of the time series need to be extracted. These are numerical quantities that aim to succinctly describe the data and to dampen the influence of noise. In some applications, these features are also required to satisfy some invariance properties. In this paper, we concentrate on time-warping invariants.We show that these correspond to a certain family of iterated sums of the increments of the time series, known as quasisymmetric functions in the mathematics literature. We present these invariant features in an algebraic framework, and we develop some of their basic properties.