Search Results

Now showing 1 - 10 of 11
Loading...
Thumbnail Image
Item

Fast, stable and accurate method for the Black-Scholes equation of American options

2008, Ehrhardt, Matthias, Mickens, Ronald E.

We propose a simple model for the behaviour of long-time investors on stock markets, consisting of three particles, which represent the current price of the stock, and the opinion of the buyers, or sellers resp., about the right trading price. As time evolves both groups of traders update their opinions with respect to the current price. The update speed is controled by a parameter $\gamma$, the price process is described by a geometric Brownian motion. The stability of the market is governed by the difference of the buyers' opinion and the sellers' opinion. We prove that the distance

Loading...
Thumbnail Image
Item

Numerical simulation of waves in periodic structures

2008, Ehrhardt, Matthias, Han, Houde, Zheng, Chunxiong

In this work we present a new numerical technique for solving periodic structure problems. This new approach possesses several advantages. First, it allows for a fast evaluation of the Robin-to-Robin operator for periodic array problems. Secondly, this computational method can also be used for bi-periodic structure problems with local defects. Our strategy is an improvement of the recently developed recursive doubling process by Yuan and Lu. In this paper we consider several problems, such as the exterior elliptic problems with strong coercivity, the time-dependent Schrödinger equation and finally the Helmholtz equation with damping.

Loading...
Thumbnail Image
Item

A threestepped coordinated level set segmentation method for identifying atherosclerotic plaques on MR-images

2008, Gloger, Oliver, Ehrhardt, Matthias, Dietrich, Thore, Hellwich, Olaf, Graf, Kristof, Nagel, Eike

In this work we propose an adapted level set segmentation technique for the recognition of atherosclerotic plaque tissue on magnetic resonance images. The images are 2dimensional crosssectional images and show different profiles from ex-vivo human vessels with high variability in vessel shape. We used a curvature based anisotropic diffusion technique to denoise the magnetic resonance images. The segmentation technique is subdivided into three level set steps. Hence, the result of every phase serves as constructive knowledge for the next level set step. By analyzing and combining carefully all available channel information during the first and second step we are capable to delineate exactly the vessel walls by using and adapting two well-known level set segmentation techniques. The third step controls an enclosing level set which separates the plaque patterns from healthy media tissue. In this step we introduce a local weighting concept to consider intensity information for conspicuous plaque patterns. Furthermore, we propose the introduction of a maximal shrinking distance for the third level set in the vessel wall and compare the results of the local weighting algorithm with and without the concept of the maximal shrinking distance. The incorporation of locally weighted intensity information into the level set method allows the algorithm to automatically distinguish plaque from healthy media tissue. The knowledge of the maximal shrinking distance can improve the segmentation results and enables to delineate tissue areas where plaque is most likely.

Loading...
Thumbnail Image
Item

A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations

2008, Antoine, Xavier, Arnold, Anton, Besse, Chritophe, Ehrhardt, Matthias, Schädle, Achim

In this review article we discuss different techniques to solve numerically the time-dependent Schrödinger equation on unbounded domains. We present in detail the most recent approaches and describe briefly alternative ideas pointing out the relations between these works. We conclude with several numerical examples from different application areas to compare the presented techniques. We mainly focus on the one-dimensional problem but also touch upon the situation in two space dimensions and the cubic nonlinear case.

Loading...
Thumbnail Image
Item

Exact artificial boundary conditions for problems with period structure

2008, Ehrhardt, Matthias, Zheng, Chunxiong

Based on the work of Zheng on the artificial boundary condition for the Schrödinger equation with sinusoidal potentials at infinity, an analytical impedance expression is presented for general second order ODE problems with periodic coefficients and its validity is shown to be strongly supported by numerical evidences. This new expression for the kernel of the Dirichlet-to-Neumann mapping of the artificial boundary conditions is then used for computing the bound states of the Schrödinger operator with periodic potentials at infinity. Other potential applications are associated with the exact artificial boundary conditions for some time-dependent problems with periodic structures. As an example, a two-dimensional hyperbolic equation modeling the TM polarization of the electromagnetic field with a periodic dielectric permittivity is considered.

Loading...
Thumbnail Image
Item

Evaluation of exact boundary mappings for one-dimensional semiinfinite periodic arrays

2008, Ehrhardt, Matthias, Sun, Jiguang, Zheng, Chunxiong

Periodic arrays are structures consisting of geometrically identical subdomains, usually called periodic cells. In this paper, by taking the Helmholtz equation as a model, we consider the definition and evaluation of the exact boundary mappings for general one-dimensional semi-infinite periodic arrays for any real wavenumber. The well-posedness of the Helmholtz equation is established via the limiting absorption principle. An algorithm based on the doubling procedure and extrapolation technique is proposed to derive the exact Sommerfeld-to-Sommerfeld boundary mapping. The advantages of this algorithm are the robustness and simplicity of implementation. But it also suffers from the high computational cost and the resonance wave numbers. To overcome these shortcomings, we propose another algorithm based on a conjecture about the asymptotic behaviour of limiting absorption principle solutions. The price we have to pay is the resolution of two generalized eigenvalue problems, but still the overall computational cost is significantly reduced. Numerical evidences show that this algorithm presents theoretically the same results as the first algorithm. Moreover, some quantitative comparisons between these two algorithms are given.

Loading...
Thumbnail Image
Item

Mathematical modeling of channel-porous layer interfaces in PEM fuel cells

2008, Ehrhardt, Matthias, Fuhrmann, J., Holzbecher, E., Linke, A.

In proton exchange membrane (PEM) fuel cells, the transport of the fuel to the active zones, and the removal of the reaction products are realized using a combination of channels and porous diffusion layers. In order to improve existing mathematical and numerical models of PEM fuel cells, a deeper understanding of the coupling of the flow processes in the channels and diffusion layers is necessary. After discussing different mathematical models for PEM fuel cells, the work will focus on the description of the coupling of the free flow in the channel region with the filtration velocity in the porous diffusion layer as well as interface conditions between them. The difficulty in finding effective coupling conditions at the interface between the channel flow and the membrane lies in the fact that often the orders of the corresponding differential operators are different, e.g., when using stationary (Navier-)Stokes and Darcy's equation. Alternatively, using the Brinkman model for the porous media this difficulty does not occur. We will review different interface conditions, including the well-known Beavers-Joseph-Saffman boundary condition and its recent improvement by Le Bars and Worster.

Loading...
Thumbnail Image
Item

Fixed domain transformations and split-step finite difference schemes for nonlinear black-scholes equations for American options

2008, Ankudinova, Julia, Ehrhardt, Matthias

Due to transaction costs, illiquid markets, large investors or risks from an unprotected portfolio the assumptions in the classical Black-Scholes model become unrealistic and the model results in strongly or fully nonlinear, possibly degenerate, parabolic diffusion-convection equations, where the stock price, volatility, trend and option price may depend on the time, the stock price or the option price itself. In this chapter we will be concerned with several models from the most relevant class of nonlinear Black-Scholes equations for American options with a volatility depending on different factors, such as the stock price, the time, the option price and its derivatives. We will analytically approach the option price by following the ideas proposed by evcovic and transforming the free boundary problem into a fully nonlinear nonlocal parabolic equation defined on a fixed, but unbounded domain. Finally, we will present the results of a split-step finite difference schemes for various volatility models including the Leland model, the Barles and Soner model and the Risk adjusted pricing methodology model.

Loading...
Thumbnail Image
Item

Numerical simulation of quantum waveguides

2008, Arnold, Anton, Ehrhardt, Matthias, Schulte, Maike

This chapter is a review of the research of the authors from the last decade and focuses on the mathematical analysis of the Schrödinger model for nano-scale semiconductor devices. We discuss transparent boundary conditions (TBCs) for the time-dependent Schrödinger equation on a two dimensional domain. First we derive the two dimensional discrete TBCs in conjunction with a conservative Crank-Nicolson-type finite difference scheme and a compact nine-point scheme. For this difference equations we derive discrete transparent boundary conditions (DTBCs) in order to get highly accurate solutions for open boundary problems. The presented discrete boundary-valued problem is unconditionally stable and completely reflection-free at the boundary. Then, since the DTBCs for the Schrödinger equation include a convolution w.r.t. time with a weakly decaying kernel, we construct approximate DTBCs with a kernel having the form of a finite sum of exponentials, which can be efficiently evaluated by recursion. In several numerical tests we illustrate the perfect absorption of outgoing waves independent of their impact angle at the boundary, the stability, and efficiency of the proposed method. Finally, we apply inhomogeneous DTBCs to the transient simulation of quantum waveguides with a prescribed electron inflow.

Loading...
Thumbnail Image
Item

Discrete transparent boundary conditions for the Schrödinger equation on circular domains

2008, Arnold, Anton, Ehrhardt, Matthias, Schulte, Maike, Sofronov, Ivan

We propose transparent boundary conditions (TBCs) for the time-dependent Schrödinger equation on a circular computational domain. First we derive the two-dimensional discrete TBCs in conjunction with a conservative Crank-Nicolson finite difference scheme. The presented discrete initial boundary-value problem is unconditionally stable and completely reflection-free at the boundary. Then, since the discrete TBCs for the Schrödinger equation with a spatially dependent potential include a convolution w.r.t. time with a weakly decaying kernel, we construct approximate discrete TBCs with a kernel having the form of a finite sum of exponentials, which can be efficiently evaluated by recursion. In numerical tests we finally illustrate the accuracy, stability, and efficiency of the proposed method. As a by-product we also present a new formulation of discrete TBCs for the 1D Schrödinger equation, with convolution coefficients that have better decay properties than those from the literature.